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ABSTRACT 

Wildfire management in Hawaii is complicated by the synergistic influences of nonnative 

invasive grasses and increased human ignitions. The frequent, high severity fires that 

often result threaten surrounding ecosystems and developed areas.  The overarching goal 

of this research was to improve wildfire management in guinea grass (Megathyrsus 

maximus) dominated ecosystems in Hawaii using in situ fuels data collection, fire 

behavior modeling, remote sensing, and ecological restoration.  Specific objectives 

included: i) quantification of rates of land cover conversion at the grass/forest ecotone 

from 1950-2011; ii) an accurate assessment of the spatial and temporal variability in 

guinea grass fuels; iii) use of in situ fuels data to parameterize a custom fuel model for 

guinea grass dominated ecosystems; iv) use of MODIS-based vegetation index data to 

accurately predict real-time fuel moisture content; and v) assessment of whether native 

species restoration can simultaneously compete with guinea grass and decrease fire 

potential. 

The results of this research provide tools to better predict and manage wildfire.  

The historical analysis showed that type conversion associated with grass invasion and 

subsequent fire occurred widely prior to active fire management, and that predicted rates 

of fire spread are 3-5 times higher in grasslands than in forests.  Guinea grass total fine 

fuel loads ranged widely, from 3.26 to 34.29 Mg ha
-1

, highlighting the importance of real-

time, site-specific data for fire management. Field data were used to parameterize a 

custom fuels model, which better predicted fire behavior than national standard or 

previous custom fuel models for guinea grass.  MODIS-based models better predicted 

live fuel moisture (R
2
=0.46) than the currently used National Fire Danger Rating System 

(R
2
=0.37) , providing managers with an improved method for assessing this critical 

component of fire behavior.  Native outplant survival averaged 51% twenty-seven 

months after planting, and outplant treatments successfully suppressed guinea grass 

(P<0.001).  Predicted fire behavior in outplant and untreated control plots, however, did 

not differ, likely due to the low moisture content of D. viscosa which dominated the 

restoration trails.  Together, this research provides the foundation for improved fire 

management in guinea grass ecosystems in Hawaii, and can inform similar work 

throughout the tropics.   
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CHAPTER 1.  INTRODUCTION   

 

Fire regimes are being  impacted globally by anthropogenic alterations such as land use 

change, increased urbanization, invasive species, and climate change (D'Antonio and 

Vitousek, 1992; Bowman et al., 2011; Bradshaw, 2012; Taylor and Scholl, 2012).  A 

familiar example of these impacts is the well-publicized large, high-intensity wildfires in 

shrub and forest ecosystems of the U.S. West.  Synergies between decades of fire 

suppression, increased wildland-urban interface, and climate change are resulting in fires 

of higher intensity and severity than those recorded historically (Veblen et al., 2000; 

Keeley, 2006; Littell et al., 2009).   

Somewhat less publicized, but equally detrimental ecologically, are the impacts 

that altered fire regimes have had on temperate grassland ecosystems. In fire dependent 

eastern North American tallgrass prairies, invasive grasses with high fuel moistures can 

lengthen fire return intervals and reduce fire size in an ecological system that evolved 

with frequent and large fires (McGranahan et al., 2012).  Conversely, in the Great Basin, 

Mojave and Sonoran deserts of western North America, invasive grasses can drastically 

decrease the mean fire return interval by providing a continuous, highly flammable 

fuelbed, which often converts shrubland ecosystems to invasive grasslands (Mack and  

D'Antonio, 1998; Brooks and Pyke, 2002).   

In tropical ecosystems, large expanses of forests have been cleared for  agriculture 

and pasturelands, reducing forest cover and facilitating nonnative grass dominance 

(Kauffman et al., 2003; Raghubanshi and Tripathi, 2009; Veldman and Putz, 2011; 

Bradshaw, 2012).  A cycle of positive feedbacks between nonnative invasive grasses and 

repeated wildfire is now a reality in many tropical landscapes formerly occupied by 

native woody vegetation  (D'Antonio and Vitousek, 1992; Mack and D'Antonio, 1998; 

Williams and Baruch, 2000; Wilcox et al., 2012).  The synergistic interactions of fire and 

invasive grasses now pose serious threats to the biological integrity and sustainability of 

these ecosystems (LaRosa et al., 2008; Wolfe and Van Bloem, 2012).   

Several highly flammable African pasture grasses were introduced to Hawaii for 

livestock forage and as ornamentals in the late 1800’s and early 1900’s (Williams and 

Baruch, 2000; Motooka et al., 2003).  In addition to impacting fire regimes, these 
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invasive grasses typically outcompete native plants for above- and belowground 

resources (Ammondt and Litton, 2012; Ammondt et al., 2012), and can alter carbon 

storage and forest structure (Litton et al., 2006), and nutrient dynamics (Asner and 

Beatty, 1996; Mack et al., 2001).  These highly competitive grasses also typically form a 

continuous understory of fine fuels, even under a full forest canopy (LaRosa et al., 2008), 

thereby increasing the potential for future fire and type conversion to nonnative 

grassland.  Once a fire does occur, the postfire plant community is typically dominated by 

rapid grass regeneration, which then predisposes these ecosystems to more frequent and 

higher intensity fires as a result of increased surface fine fuel loads and altered  

microclimate (Smith and Tunison, 1992; Pyne et al., 1996; Blackmore and Vitousek, 

2000; LaRosa et al., 2008; Ainsworth and Kauffman, 2010). 

Guinea grass (Megathyrsus maximus, [Jacq.]  previously Panicum maximum and 

Urochloa maxima [Jacq.]), was introduced to Hawaii for cattle forage and became 

naturalized in the islands by 1871 (Motooka et al., 2003; Portela et al., 2009).  It quickly 

became a problematic invader in Hawaiian landscapes because it is adapted to a wide 

range of ecosystems (e.g., dry to mesic), where it alters flammability by dramatically 

increasing fuel loads and continuity.  Year-round high fine fuel loads with a dense layer 

of standing and fallen dead biomass maintain a significant fire risk throughout the year.  

Because guinea grass recovers quickly following disturbance, including fire, and is 

competitively superior to most native species (Ammondt and Litton, 2012), many areas 

of Hawaii, as well as throughout the tropics, are now dominated by this nonnative 

invasive grass (Beavers, 2001). 

 Tropical dry forests are among the most threatened ecosystem types in the world 

(Murphy and Lugo, 1986), and the widespread invasion of nonnative grasses and change 

in fire regimes are driving factors in their decline.  In order to preserve remnants of these 

forests and to restore degraded dryland ecosystems, the invasive grass/wildfire cycle 

(D'Antonio andVitousek, 1992) must be managed, and ultimately eliminated.  The 

overarching objective of this dissertation research was to investigate tools to improve 

wildfire prediction in guinea grasslands of Oahu, Hawaii using in situ fuels data 

collection, fire behavior modeling, remote sensing, and ecological restoration with native 

woody species.  Because guinea grass, along with similar large tropical grasses, is a 
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widespread invader in the tropics (Williams and Baruch, 2000), this research can inform 

fire management efforts throughout the tropics.  

In a landscape analysis of land cover change from 1950-2011 (Chapter 2), field 

data and modeling were used to compare fuels and potential fire behavior in adjacent 

forests and grasslands.  The rate and extent of land cover change at the grassland-forest 

boundary in and around two heavily utilized areas at Schofield Barracks and Makua 

Military Reservation on Oahu, Hawaii was then quantified.  I hypothesized that (i) fine 

fuel loads and heights would be lower and fuel moisture higher in forest plots compared 

to grass plots due to altered microclimate in the understory (Hoffmann et al., 2002) and 

shading in forest plots (Funk and McDaniel, 2010); (ii) as a result of different fuel 

properties (i.e. lower fuel heights and fuel loads), modeled fire behavior would be less 

severe (i.e. lower rates of spread, fireline intensity, flame lengths, and probability of 

ignition) in forest plots compared to grass plots (Freifelder et al., 1998); and (iii) rates of 

conversion from forest to grassland would increase through time over the past 50+ years 

due to increased ignition sources, and that rates of conversion would be higher in heavily 

utilized grassland areas than in adjacent forests (Beavers, 2001).  To test these 

hypotheses, I measured fuel loads in forest and grassland plots, and used these data to 

model potential fire behavior.  Land cover change was quantified from 1950-2011 with 

historical imagery.  Results from this study suggest that type conversion associated with 

nonnative grass invasion and subsequent fire occurred widely prior to active 

management, and that once converted to grasslands there is a significant increase in the 

spread and intensity of modeled fires.  However, slower conversion rates in recent years 

suggest that active fire management is currently preventing further degradation of 

existing forests. 

 I then assessed the spatial and temporal variability in guinea grass fuels (live and 

dead fuel loads and moistures) on high fire risk areas on the Waianae Coast and North 

Shore of Oahu, Hawaii (Chapter 3).  Specific objectives included quantifying the: (i) 

spatial variability in live and dead fine fuel loads in guinea grass ecosystems in high fire 

risk areas; (ii) temporal variability at multiple scales (interannual, intraannual, and fine-

scale) in fuel loads and fuel moistures in guinea grass ecosystems in high fire risk areas; 

and (iii) relationship between weather variables (precipitation, relative humidity, wind 
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speed, and temperature) and fine fuel loads and moistures to explore predictive capacity 

to inform fire management of guinea grass ecosystems in Hawaii.  Overall, fine fuel loads 

and moisture content exhibited tremendous variation, both spatially and temporally, 

highlighting the importance of real-time, site-specific data for fire prevention and 

management. However, tight correlations with commonly quantified weather variables 

demonstrate the capacity to accurately predict fuel variables across large landscapes to 

better inform management and research on fire potential in guinea grass ecosystems in 

Hawaii, and throughout the tropics. 

Using field data, a custom fuel model was created to predict the spread of fire 

through guinea grass dominated ecosystems (Chapter 4).  I hypothesized that a fuel 

model based on in situ field fuels measurements and climate data would perform better 

than either national tall grass fuel models (Anderson, 1982; Scott and Burgan, 2005) or 

previous custom models for this species in Hawaii (Beavers, 2001).  To test this 

hypothesis, I used field data collected in guinea grass dominated ecosystems on the 

Waianae Coast and North Shore areas of Oahu, Hawaii to develop a custom guinea grass 

fuels model. This custom model, as well as multiple standard tall grass and previous 

custom fuel models, were tested using data from 5 prescribed fires in guinea grass 

dominated ecosystems (Beavers, 2001).  Of all fuel models tested, my custom model 

output best matched fire behavior observed in validation fires, suggesting that a field 

based fuel model can improve the accuracy of fire behavior modeling, thereby increasing 

capacity for land managers to make predictions of fire behavior in M. maximus 

ecosystems in Hawaii and throughout the tropics.  

Fuel moisture content is an important parameter driving fire behavior and spread.  

It is relatively easy to quantify in situ, but time consuming and very variable temporally, 

making it difficult to predict.  I explored alternative methods for real time fuel moisture 

prediction using MODIS-based remotely sensed vegetation indices (Chapter 5).  Specific 

hypotheses tested included:  (i) because vegetation indices are a good indicator of 

vegetation greenness, there would be strong relationships between vegetation indices 

derived from MODIS imagery and in situ live fuel moisture content.  While I expected 

stronger relationships between vegetation indices and live fuel moisture, I also expected 

to see weaker correlations with dead fuel moisture, as moisture change in both fuel 
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components often occur simultaneously; (ii) because the Enhanced Vegetation Index 

(EVI) performs well in areas of high biomass (Jensen, 2007), it would be a better 

predictor of fuel moisture than other vegetation indices given the dense grass cover 

present on the study sites; (iii) daily MODIS data would be a better predictor of in situ 

fuel moisture than 8-day or 16-day composites, as fuel moisture can change rapidly 

within a site over a short time period, particularly following pulse precipitation events. 

MODIS-based predictive models for live fuel moisture were only moderately effective 

(R
2
= 0.46), but outperformed both the currently used National Fire Danger Rating System 

(R
2
= 0.37) and the Keetch-Byram Drought Index (R

2
= 0.06).  Dead fuel moisture 

prediction was less robust, and was best predicted by a model including the Enhanced 

Vegetation Index 2 (EVI2) and the Normalized Difference Vegetation Index (NDVI) 

(R
2
= 0.19). These improvements in fuel moisture prediction in nonnative grasslands can 

greatly improve management of fire in Hawaii, as well as inform fire management in 

other grass-dominated tropical ecosystems. 

Finally, the potential for using native woody species in restoration outplant 

treatments to simultaneously compete with guinea grass and reduce fire occurrence and 

spread was investigated (Chapter 6).  I quantified species cover and fuel loads 27 months 

after outplanting, and modeled fire behavior in a randomized complete block design 

(three native species outplant treatments, herbicide control and untreated control) in a 

lowland dry ecosystem dominated by guinea grass.  Specific hypotheses tested included:  

(i) guinea grass cover and fine fuel loads would be lower in native outplant treatment 

plots than in herbicide control or untreated control plots due to competition between the 

grass and native plants (Ammondt and Litton, 2012); (ii) total fuel loads would be highest 

in untreated control plots due to chemical grass suppression in outplant and herbicide 

control treatments (Motooka et al., 2002); (iii) fine fuel moisture content would be higher 

in outplant treatments than in either herbicide control or untreated control plots due to 

shading by woody species (Bigelow and North, 2012); and (iv) outplanting native species 

would result in decreased potential fire spread and intensity compared to untreated 

control plots (Griscom and Ashton, 2011; Bigelow and North, 2012).  Native species 

survival was moderate (51%) 27 months after outplanting, and outplanting treatments 

successfully reduced guinea grass live and dead grass fuel loads by more than 92% 
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(P<0.001) and 68% (P<0.05), respectively.  However, there was no concurrent reduction 

in potential fire behavior parameters.  This was likely due to the very low live moisture 

content (84%) of the dominant D. viscosa individuals in every outplanting plot, which 

was substantially lower than that of other native woody species (201-328%).  These 

results demonstrate that restoring a native species component to degraded tropical dry 

forest sites is possible, but that species selection is critical when fire management is a 

primary goal, and successful ecological restoration with native species does not always 

alter the potential for fire and subsequent site degradation. 

 Together, the research presented in this dissertation provides the foundation for 

improved fire management in guinea grass ecosystems in Hawaii, and can inform similar 

work in grasslands throughout the tropics.  An accurate assessment of the current 

variability in guinea grass fuel loads as well as a quantification of the historical rates of 

conversion at the grass/forest ecotone provide a foundation to further investigate 

approaches for future fire prediction, fuels management, and potential for dry forest 

restoration. Because tropical dry ecosystems worldwide are rapidly being degraded due to 

invasive species, altered fire regimes, and expanding human populations, it is imperative 

that continued measures be taken to protect and preserve these imperiled ecosystems.
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CHAPTER 2.  CHANGES IN LAND COVER AND FIRE BEHAVIOR 

ASSOCIATED WITH NONNATIVE GRASS INVASION IN HAWAII 

 

Abstract 

It is generally accepted that nonnative grass invasion and subsequent fire result in 

landscape scale type conversion from forest to grassland throughout the tropics.  

However, there is little published data to support this paradigm on tropical islands, and no 

study has examined changes in fire potential following type conversion in these systems.  

My objectives were to: (i) compare potential fire behavior in forests vs. grasslands, and 

(ii) measure land cover change from 1950-2011 along two grassland/forest ecotones in 

Hawaii.  I quantified fuel loads and moistures in nonnative forest and grassland 

(Megathyrsus maximus) plots (n=6), and modeled potential fire behavior with 

BehavePlus.  Land cover change was then quantified from 1950-2011 with historical 

imagery.  Fine fuel loads and moisture content did not differ between cover types, but 

mean surface fuel height was 31% lower in forests than grasslands (P<0.02).  Predicted 

rates of spread were 3-5x higher in grasslands (5.0-36.3 m min
-1

) than forests (0-10.5 m 

min
-1

) (P<0.001), and flame lengths were 2-3x higher in grasslands (2.8-10.0 m) than 

forests (0-4.3 m) (P<0.01).  Rapid conversion from forest to grassland occurred for ~40 

years prior to implementation of active fire management in the early 1990’s.  These 

results support general paradigms for the wider tropics, and demonstrate that type 

conversion associated with nonnative grass invasion and subsequent fire occurs widely 

on tropical islands without active management. Moreover, once converted to grassland 

there is a significant increase in fire intensity, likely providing a positive feedback to 

continued grassland occurrence in the absence of active fire management. 

 

Introduction 

It is generally well accepted that the synergistic effects of nonnative grass invasion and 

repeated wildfire can detrimentally impact native species (Loope, 1998; Loope, 2004; 

Hughes and Denslow, 2005), often converting woody plant communities into nonnative 

grasslands (Hughes et al., 1991; D'Antonio and Vitousek, 1992; Eva and Lambin, 2000; 
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Hoffmann et al., 2002; Ainsworth and Kauffman, 2010).  In Hawaii, grass invasion and 

increased fire frequency is particularly problematic, as fire is not believed to have 

historically played a large role in the evolution of these island ecosystems (LaRosa et al., 

2008), and many native species do not possess adaptations to survive a regime of 

frequent fires (Rowe, 1983; Vitousek, 1992) or to passively recover following fire 

(D'Antonio et al., 2011).  While prior studies have examined grass-fire interactions at the 

plot level (Hughes et al., 1991; Ainsworth and Kauffman, 2010), no study in Hawaii has 

quantified this type conversion over large spatial extents or long temporal scales.  One 

recent study in Hawaiian tropical dry forests showed that at the plot level, invasive 

grasses remain dominant, with little native recovery, up to 37 years after fire and 

conversion of forest to nonnative grassland (D'Antonio et al., 2011).   

Invasive grasses can alter the occurrence and behavior of fires via a variety of 

both intrinsic (characteristics of the plants themselves) and extrinsic (arrangement of 

plants across the landscape) fuel properties (Brooks et al., 2004).  Intrinsic fuel properties 

associated with type conversion from forest to grassland can include increased 

flammability due to lower fuel moisture (Brooks et al., 2004) and competitive superiority 

in the postfire environment (Veldman and Putz, 2011).  Extrinsic properties, in turn, can 

include increased horizontal fuel continuity (Brooks et al., 2004), changes in 

microclimate (Blackmore and Vitousek, 2000; Hoffmann et al., 2002), high fine fuel 

loads (Litton et al., 2006) , and alterations to packing ratios (Brooks et al., 2004; 

Hoffmann et al., 2004).   

 Highly flammable African pasture grasses were introduced to Hawaii for 

livestock forage and as ornamentals in the late 1800’s and early 1900’s (Williams and 

Baruch, 2000; Motooka et al., 2003).  In addition to impacting fire regimes, these 

invasive grasses commonly outcompete native plants for above- and belowground 

resources (Ammondt and Litton, 2012; Ammondt et al., 2012) and alter carbon storage 

and forest structure (Litton et al., 2006), and nutrient dynamics (Asner and Beatty, 1996; 

Mack et al., 2001).  These highly competitive grasses often form a continuous understory 

of fine fuels, even under a forest canopy (LaRosa et al., 2008), thereby increasing the 

potential for future fire and type conversion to nonnative grassland.  Once a fire does 

inevitably occur, the postfire plant community is typically dominated by rapid grass 
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regeneration, which then is thought to predispose these ecosystems to more frequent and 

higher intensity fires as a result of increased surface fine fuel loads and changes in 

microclimate (Smith and Tunison, 1992; Pyne et al., 1996; Blackmore and Vitousek, 

2000; LaRosa et al., 2008; Ainsworth and Kauffman, 2010).  This cycle of nonnative 

grass invasion, fire, and reinvasion is a common occurrence in tropical ecosystems 

globally following land cover change (D'Antonio and Vitousek, 1992). 

Throughout the tropics, conversion from forest to grassland has resulted in 

increased cover of invasive grasses (Williams and Baruch, 2000).  Guinea grass 

(Megathyrsus maximus, [Jacq.]  previously Panicum maximum and Urochloa maxima 

[Jacq.]), was introduced to Hawaii for cattle forage and became naturalized in the islands 

by 1871 (Motooka et al., 2003; Portela et al., 2009).  It quickly became a problematic 

invader in Hawaiian landscapes because it is adapted to a wide range of ecosystems (e.g., 

dry to mesic), where it alters flammability by dramatically increasing fuel loads and fuel 

continuity.  Year-round high fine fuel loads with a dense layer of standing and fallen dead 

biomass maintain a significant fire risk throughout the year in guinea grass dominated 

ecosystems in Hawaii (Chapter 3).  Because guinea grass recovers quickly following 

disturbance (i.e. fire, ungulate grazing, land use change, etc.) and is competitively 

superior to native species (Ammondt and Litton, 2012), many areas of Hawaii, as well as 

throughout the tropics, are now dominated by this nonnative invasive grass (Chapter 3).   

 Plot level studies provide important insights into the relationships between 

nonnative invasive grasses, fire, and type conversions, but a greater understanding of the 

mosaic created by grass invasion, fire, and postfire succession is possible by examining 

these processes at the landscape scale (Brook and Bowman, 2006; Levick and Rogers, 

2011).  Furthermore, an understanding of the spatio-temporal dynamics of vegetation 

change over long time scales can better elucidate the mechanisms driving vegetation 

change.  Because the invasive grass–wildfire cycle has been so well documented at the 

plot scale, the dominant paradigm across the tropics is that fire shifts composition from 

woody communities to grassland, that these changes persist over long time periods, and 

that the end result is a landscape that is increasingly dominated by nonnative invasive 

grasses that have a much higher fire risk than adjacent forests.  However, few studies 
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have looked at the landscape vegetation cover patterns resulting from repeated fire and 

grass invasion at larger scales (Blackmore and Vitousek, 2000; Grigulis et al., 2005).   

The objectives of this study were to: (i) use field data and modeling to compare 

fuels and potential fire behavior in adjacent forests and grasslands, and (ii) measure the 

rate and extent of land cover change at the grassland-forest boundary from 1950-2011 in 

and around two heavily utilized areas at Schofield Barracks and Makua Military 

Reservation on Oahu, Hawaii.  I hypothesized that (i) fine fuel loads and heights would 

be lower and fuel moisture higher in forest plots compared to grass plots due to altered 

microclimate in the understory (Hoffmann et al., 2002) and shading in forest plots (Funk 

and McDaniel, 2010); (ii) as a result of differences in fuel properties (i.e. lower fuel 

heights and fuel loads), modeled fire behavior would be less severe (i.e. lower rates of 

spread, fireline intensity, flame lengths, and probability of ignition) in forest plots 

compared to grass plots (Freifelder et al., 1998); (iii) rates of conversion from forest to 

grassland would increase through time over the past 50+ years due to increased ignition 

sources, and (iv) rates of conversion would be higher in heavily utilized grassland areas 

than in adjacent forests (Beavers, 2001).  To test these hypotheses, I measured fuel loads 

and moisture in forest and grassland plots, and used these data to model potential fire 

behavior.  Land cover change was quantified from 1950-2011 with historical imagery. 

 

Methods 

Fuel Quantification 

Fuel loads in nonnative-dominated guinea grass ecosystems in areas of open grassland 

(grass sites) vs. areas with a nonnative tree overstory (forest sites) were quantified in the 

summer of 2008.  Sites were located in the Waianae Kai Forest Reserve (forest: 

elevation, 367 m.a.s.l.; MAP [mean annual precipitation], 1399 mm; MAT [mean annual 

temperature], 20ºC; grass: 193 m a.s.l.; MAP, 1134 mm; MAT, 23ºC) and Dillingham 

Airfield (forest and grass: 4 m a.s.l.; MAP, 900 mm; MAT, 24ºC; (Giambelluca et al., 

2011); T. Giambelluca, unpub. data) on the Waianae Coast and North Shore areas, 

respectively, of Oahu, Hawaii (Figure 1).  All sites are dominated by guinea grass in the 

understory.  Forest sites at Waianae Kai Forest Reserve are dominated by nonnative trees, 

including Leucaena leucocephala (Lam.) de Wit in the subcanopy and kiawe (Prosopis 
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pallida (Humb. andBonpl. ex Willd.) Kunth) and silk oak (Grevillea robusta A. Cunn. ex 

R. Br.) in the overstory.  Forest sites at Dillingham Airfield have dense nonnative L. 

leucocephala in the canopy, with infrequent other nonnative woody species scattered 

throughout.  Soils at Dillingham Airfield are in the Lualualei series (fine, smectitic, 

isohyperthermic Typic Gypsitorrerts) formed in alluvium and colluvium from basalt and 

volcanic ash.  Soils at Waianae Kai are in the Ewa series (fine, kaolinitic, 

isohyperthermic Aridic Haplustolls) formed in alluvium weathered from basaltic rock.   

Within each of the two sites, three grassland and three forest plots were selected 

using USGS imagery in Google Earth 5.0 based on continuous grass cover and limited 

overstory trees for grassland plots, and a continuous tree overstory with guinea grass in 

the understory for forest plots.  Sites were chosen randomly among all possible locations 

that met these selection criteria.  In each site, the following fuel variables were measured: 

(i) total fuel loads (standing live and dead, and litter), (ii) fuel composition (live grass, 

dead grass, shrubs, standing trees, downed wood), (iii) mean fuel height and (iv) fuel 

moisture (for both live and dead fine fuels).  In each plot, three parallel 50m transects 

were established 25m apart, and all herbaceous fuels were destructively harvested in six 

25 x 50 cm sub-plots at fixed locations along each transect (n=18/plot).  Samples were 

immediately placed into plastic bags to retain moisture.  Within 6 hours of field 

collection, all samples were separated into categories (live grass, standing dead grass, 

surface litter, and downed wood), weighed, dried in a forced air oven at 70
o
C to a 

constant mass (minimum 48 hours), and reweighed to determine dry mass and moisture 

content relative to oven dry weight.   

Additionally, live standing trees and standing and downed dead wood were 

quantified in each plot.  The diameter at 1.3m height (dbh) of all L. leucocephala trees 

that occurred in 1 x 50 m belt transects was measured.  Biomass was determined using an 

existing allometric equation (Dudley and Fownes, 1992) after first testing its utility for 

estimating biomass for trees from the Waianae Kai field site across the widest possible 

range of sizes found (n=20, dbh ranging from 1.5 to 6.2 cm dbh).  There was a strong 

correlation between predicted and observed values (r
2
= 0.95), indicating that the existing 

equation accurately estimates L. leucocephala biomass for this study site.  While other 

woody species occurred in the general study area, none were encountered in any of the 
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sampling transects.  Coarse downed woody fuels were sampled along three 50 m 

transects/plot using a planar intercept technique (Van Wagner, 1968; Brown, 1974).  In 

addition, the height of the tallest blade of grass was measured in each subplot before 

clipping, and mean fuel height was recorded as 70% of the average maximum height 

across subplots (Burgan and Rothermel, 1984). 

 

Fire Modeling 

The fine fuel data described above were used to parameterize the BehavePlus 5 Fire 

Modeling System (Andrews et al., 2005) to generate predicted fire behavior estimates for 

each plot.  Live and dead fuel heat contents were measured by bomb calorimetry (Hazen 

Research, Inc., Golden, CO, USA).  Previously published values for dead fuel moisture 

of extinction for guinea grass (Beavers, 2001) and woody surface area to volume ratio for 

humid tropical grasslands (Scott and Burgan, 2005) were used.  Surface area to volume 

ratios for both live and dead fuels were measured on guinea grass individuals from 

Dillingham Airfield and Waianae Kai Forest Reserve (n=20) using a LI-3100C Area 

Meter (LI-COR Environmental, Lincoln, Nebraska) and water displacement. After 

examining wind speed data collected at the field sites, I selected an average 20-ft 

windspeed (15 km hr
-1

) and an extreme 20-ft windspeed (30 km hr
-1

) to simulate 

moderate and severe wind scenarios for all sites.  Wind adjustment factors of 0.4 and 0.3 

were used for grass and forest plots, respectively, to adjust the windspeed collected by the 

RAWS weather stations (20-ft wind speed) to vegetation height (surface wind speed) 

(Andrews et al., 2005).  Output variables of interest from the fire behavior model 

included: maximum rate of spread (ROS; m min
-1

), fireline intensity (kW m
-1

), flame 

length (m), and probability of ignition (%). 

 

Historical and Spatial Land Cover Change Analysis 

Land cover classifications were determined from orthorectified aerial photographs and 

high resolution multispectral Worldview-2 imagery for Makua Military Reservation (108 

m.a.s.l.; MAP, 864 mm; MAT, 23ºC) and Schofield Barracks (297 m.a.s.l.; MAP, 1000 

mm; MAT, 22ºC) (Giambelluca et al., 2011).  Classifications for Makua were derived 

from images for five time periods: 1962, 1977, 1993, and 2004 aerial photographs, and 
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2010 Worldview-2 scenes.  Schofield classifications were created for six time periods: 

1950, 1962, 1977, 1992, and 2004 aerial photographs, and 2011 Worldview 2 scenes.  

The 2004 images for Makua and Schofield were high resolution (0.3 m) USGS registered 

images with a positional accuracy that did not exceed 2.12 m RMSE (root mean square 

error).  The other images were georegistered to the 2004 images with a first-order 

polynomial warping to achieve an average RMSE of 3.37 m and a maximum RMSE of 

9.84 m. Worldview-2 images are high resolution (~0.5 m) with a positional accuracy of 

12.2 m at the CE90 level.   

 Both Makua and Schofield site boundaries were digitized into polygon vector 

shapefiles using ArcGIS Desktop Version 9.3.1 (ESRI, Redlands, California, USA).  

Each site was divided into two areas of interest (AOI): a grassland area within the fire 

break which is heavily utilized for military training activities and a forested area outside 

the fire break, where little military activity occurs.  While I have defined these areas as 

predominantly forest or grass, respectively, each contains patches of both grass and 

woody cover as well as patches of more intensive utilization (i.e. military training areas, 

developed).  ArcGIS Data Management tool Create Fishnet was used to divide the study 

sites into grids with a 50 x 50 m cell size and then to clip the grids to the site boundaries.  

After the grids were created, they were overlaid onto the images for classification.   

 Land cover in each cell was classified into one of seven cover classes at Makua:  

Grass, shrub, forest, bare, developed, military training area (MTA, highly disturbed area 

with minimal vegetative cover), and shadow/cloud (treated as No Data).  The woody 

plant composition at Schofield is highly variable and forest and shrub cover classes are 

often indistinguishable from aerial images.  Therefore, at Schofield shrub and forest 

cover classes were combined into a single mixed woody cover class, resulting in only six 

cover classes for this site (grass, woody, bare ground, developed, MTA, and No Data).  

The total area of each cover class was calculated for every time period within the two 

AOIs for both sites.  Amounts and rates of land cover change (expressed as average 

hectares per year) were then extrapolated for each of the four AOIs over each time 

period.   

Examination of historical imagery showed an apparent pattern of increasing 

homogeneity over time.  Therefore, I used Fragstats, a spatial pattern analysis program 
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(McGarigal et al., 2012), to quantify landscape metrics for each date at each AOI.  

Metrics examined included number of patches, contagion (the tendency of patches to 

occur in large, continuous patches, expressed as a percentage, where zero is maximally 

heterogeneous), and perimeter: area ratio. 

 

Statistical Analyses 

General linear models were used to determine differences in live and dead fine fuel loads, 

fine fuel moistures, average fuel height, fire behavior variables (ROS, fireline intensity, 

flame length) and probability of ignition between grassland and forest plots.  Because 

there is an elevation/ precipitation gradient at Waianae Kai Forest Reserve, and forest 

plots were clustered ~150 m higher than grassland plots, MAP was also included in the 

model to control for differences in environmental variables that may have potentially 

impacted fuels and fire behavior.  Site was treated as a random factor, plot type (forest or 

grassland) was treated as a fixed factor, and MAP was used as a covariate.  Live and dead 

fine fuel variables were log-transformed for analysis to meet model assumptions of 

normality and homogeneity of variance, but all results are presented herein as 

untransformed data for ease of interpretation.  Minitab v. 15 (Minitab, Inc., State College, 

PA) was used for all statistical analyses, and significance was assessed at α=0.05.  For 

Fragstats spatial analyses, AOI’s within sites are not independent, and only two sites 

were analyzed, making statistical inference inappropriate.  Therefore, this analysis was 

limited to an examination of temporal trends in patterns.   

 

Results 

Fuel Quantification 

After controlling for differences in MAP (P<0.01), there were few differences in fine 

fuel loads between forests and grasslands, with live fine fuels ranging from 2.1-5.9 Mg 

ha
-1

(P=0.86), and dead fine fuels ranging from 10.4-19.5 Mg ha
-1 

(P=0.89; Table 1).  

MAP was an effective predictor of both live (P=0.02) and dead (P=0.05) fuel moisture, 

and there was no evidence of differences in fuel moisture between forest and grassland 

(live, P=0.19; dead, P=0.95).  Live fine fuel moisture at the time of measurement ranged 

from 47-173%, and dead fine fuel moisture from 14-65%.  Mean fuel height, however, 
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was 31% lower in forests (72 cm) than in grasslands (105 cm; P<0.02) after accounting 

for differences in MAP (Table1). 

 

Fire Modeling 

Despite fuels only differing between forest and grassland in terms of height, predicted 

fire behavior differed greatly between these two land cover types (Table 2).  Under 

moderate wind conditions (15 kph), modeled rate of spread was 3-5x higher in grassland 

(5.0 to 17.7 m min
-1

) than forest (0 to 5.0 m min
-1

) (P<0.001), and flame lengths were 2-

3x higher in grassland (2.8-7.2 m) than forest (0-3.0 m; P<0.01).  Fireline intensity at 

moderate wind conditions was also higher in grassland (2,426-19,034 kW m
-1

) than forest 

(0-2,914 kW m
-1

) (P<0.01).  Under extreme wind conditions (30 kph), predicted rates of 

spread were 3-10x higher in grasslands (10.1-36.3 m min
-1

) than in forests (0-10.5 m min
-

1
) (P<0.001); flame lengths were 2.5-4x higher in grasslands (3.9-10.0 m) than forests (0-

4.3m) plots (P<0.01); and fireline intensity was higher in grasslands (4,919-39,004 kW 

m
-1

) than in forests (0-6,166 kW m
-1

) (P<0.01).  Probability of ignition ranged from 0-

32% and did not differ between cover types under either moderate (P=0.27) or extreme 

(P=0.27) wind conditions (Table 2).   

 

Historical and Spatial Land Cover Change Analysis 

Invasive grassland cover increased in grass areas (heavily utilized areas inside the 

firebreak) at both Makua (total area of 320 ha) and Schofield (total area of 745 ha) at 

rates of 2.62 and 1.83 ha yr
-1

, respectively, over the entire 50+ years examined, with more 

rapid rates of conversion (up to 7.41 ha yr
-1

) occurring before aggressive fire 

management practices were implemented in the early 1990’s (Table 3; Figures 2-5).  At 

Makua, conversion from forest to grassland in the surrounding forest area (1244 ha area) 

was slower (1.78 ha yr
-1

) than in the grass area (Figure 2). In the forest area at Schofield 

(1576 ha), unlike Makua, conversion of grassland to forest occurred at a faster rate (4.75 

ha yr
-1

) than in grass areas (Figure 3).  Change in land cover over time was more dynamic 

at Makua (Figure 3) than at Schofield (Figure 4), coinciding with large and frequent fires 

at Makua, and fewer acres burned at Schofield.   



16 

 

 The number of patches decreased steadily in forest areas at both Schofield and 

Makua from 1950 until 1992/1993, and then increased again in 2004 and 2010/2011.  The 

number of patches in grass areas fluctuated over time, without any clear trends (Figure 

6a).  Contagion in forested AOI’s differed greatly by site.  At Schofield, contagion was 

>50% for all dates, and reached >80% by 2004.   At Makua, contagion also gradually 

increased, but remained much lower (29-49%) than that observed at Schofield.  In the 

heavily utilized grass area, contagion was similar at both sites, ranging from 43-59%, and 

stayed fairly constant over time. The perimeter:area ratio varied greatly over the sample 

period, with no clear trends over time or site (Figure 6c).   

 

Discussion 

These results show that the areas studied have experienced large type conversions from 

forest to grassland over the past 50+ years, and that this conversion to grasslands has 

subsequently altered fuel heights and increased modeled fire spread and intensity.  As 

hypothesized, increased fuel bed depth and a differential effect of wind at the fuel surface 

(Freifelder et al., 1998; Andrews et al., 2005) in grassland has led to the potential for 

much more intense fire behavior compared to forest.  These data support previous plot-

level work in Hawaii (Hughes et al., 1991; Freifelder et al., 1998), and elsewhere in the 

tropics (Williams and Baruch, 2000; Hoffmann et al., 2002; Rossiter et al., 2003), 

demonstrating that the synergistic effects of fire and nonnative grass invasion can lead to 

a pervasive grass-wildfire cycle.   

On a landscape scale, however, the interactions among fire, grass invasion, 

nonnative woody species and fire management appear to be much more complex.  

Because it is generally accepted that repeated fires and the presence of nonnative grasses 

lead to a landscape that is increasingly dominated by flammable grasslands, I expected to 

see an increase in the rate and extent of conversion in more recent years as compared to 

historical landscapes.  While I acknowledge that the two valleys analyzed in this study do 

not mirror all landscapes in the tropics, they do represent among the most highly 

impacted end of the spectrum in terms of utilization intensity and opportunities for fire 

ignition (i.e., frequent military training activities).  Because of this, I expected to see 

rapid rates of land cover conversion.  The mean trend over time in grassland areas at both 
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sites was a reduction in woody cover with a concomitant increase in grassland cover, as 

originally hypothesized.  This was expected, as these areas are heavily utilized by 

military training activities, and ignitions from training are frequent.  In the forests, there 

were different trends observed over time.  At Makua, where fires have been larger and 

more frequent, the forest is slowly being replaced by grassland.  Fire management has 

been exceedingly difficult at this site (Beavers et al., 1999) due to low precipitation and 

fuel moistures, remoteness, intensity of military training, and common anthropogenic 

ignitions (i.e. arson, roadside).  In 2004, all live fire training stopped at Makua to address 

cultural and fire concerns at this site, but several human ignited fires have occurred since.   

At Schofield, however, the pattern of change over time in the forest was very 

different from Makua.  Grass cover steadily decreased from 1950 to present, while 

woody species, and to a lesser extent military training areas, increased.  While this area is 

inaccessible due to unexploded ordinance, I presume that most of the woody increase is 

due to the spread of nonnative woody species, rather than a recovery of a very limited 

native plant component in the area.  Several factors may contribute to the differential 

response at Schofield.  This site has ~16% higher precipitation than Makua (Giambelluca 

et al., 2011), with higher fuel moistures (Chapter 3).  Additionally, fire managers at 

Schofield have been quite successful at containing fires within the fire break perimeter 

since improved fire management began in the 1990’s.  A well trained fire crew is housed 

on this installation, and a well-designed fire management plan appears to have largely 

limited severe wildfires (Beavers and Burgan, 2001).   

From this study it can be inferred that at a landscape scale, the grass-wildfire 

cycle may not be the final endpoint for all fire impacted and nonnative grass invaded 

tropical ecosystems, as is currently believed by many in the science and management 

communities in the state.  A recent review of the impacts of woody invasive plants on fire 

regimes (Mandle et al., 2011) showed that while most discussion centers around the 

effects of grass invaders, invasive woody plants can also alter ecosystem properties and 

patterns, thereby impacting future fire regimes.  A dominant nonnative woody invader in 

the forested area at Schofield, Schinus terebinthifolius Raddi (christmasberry) (Beavers 

and Burgan, 2001), may reduce fire temperature and spread (Beavers and Burgan, 2001; 
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Stevens and Beckage, 2009), potentially offering an escape from the grass-wildfire cycle 

(Mandle et al., 2011).   

In summary, I investigated evidence for the dominant paradigm that grass 

invasion and subsequent fire lead to widespread conversion from forest to grassland and 

increased frequency and severity of wildfire.  While these results show that grasslands are 

prone to more extreme fire behavior than forests, it was not always the case that increased 

flammability led to widespread increases in grassland cover across the landscape.  In fact, 

many areas appear to be recovering a woody overstory, albeit nonnative, suggesting that 

active fire management is largely preventing further type conversion to nonnative 

grasslands. 
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Table 1.  Live and dead fine fuel loads (Mg ha
-1

), fuel moisture (%), and maximum fuel height (cm) in open guinea grass ecosystems 

and forested ecosystems with a guinea grass understory on leeward Oahu, Hawaii.  Means and standard errors are given for fuels 

variables at each site (N=3).  Significant model factors are indicated by bold font in the last three columns. 

 

 

 

Variable 
Dillingham 

Grass   

Dillingham 

Forest   

Waianae Kai 

Grass   

Waianae Kai 

Forest  

Model 

R
2 
(%) 

MAP Site Type 

(P-value) 

live fine fuels  4.6 (0.9) 5.9 (3.9) 3.7 (0.4) 2.1 (1.0) 31.1 0.38 0.65 0.86 

dead fine fuels  19.5 (4.3) 19.5 (3.0) 13.7 (0.6) 10.4 (1.8) 51.4 0.52 0.80 0.89 

live fuel moisture  47.2 (3.6) 78.2 (13.1) 57.7 (9.0) 173.6 (27.3) 84.2 0.02 0.18 0.19 

dead fuel moisture  13.6 (2.3) 23.4  (6.8) 15.5 (2.9) 65.2 (31.4) 61.7 0.05 0.14 0.95 

max. fuel height 138.6 (9.7) 71.0 (3.0) 71.3 (10.7) 72.3 (12.0) 76.5 0.02 <0.01 <0.01 
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Table 2.  Predicted fire behavior under both moderate (15 kph) and severe (30 kph) wind conditions in open guinea grass 

ecosystems and forested ecosystems with a guinea grass understory on leeward Oahu, Hawaii.  Means and standard errors are 

given for fire behavior variables at each site (N=3).  Significant model factors are indicated by bold font in the last three columns. 

Variable 
Wind 

condition 

     

Dillingham 

Grass 

   

Dillingham 

Forest  

Waianae 

Kai Grass  

Waianae Kai 

Forest  

Model 

R
2 
(%) 

MAP Site Type 

  
(P-value) 

Rate of Spread 

(m min
 -1

) 

moderate 14.9 (1.6) 2.7 (1.2) 5.8 (0.6) 0.4 (0.4) 91.0 0.04 <0.01 <0.001 

severe 30.7 (3.1) 5.7 (2.6) 12.0 (1.2) 0.8 (0.8) 91.1 0.04 <0.01 <0.001 

Flame Length 

(m) 

moderate 5.8 (1.0) 2.1 (0.5) 3.0 (0.2) 0.3 (0.3) 84.8 0.61 0.10 <0.01 

severe 8.1 (1.4) 2.9 (0.8) 4.3 (0.3) 0.4 (0.4) 84.6 0.62 0.11 <0.01 

Fireline Intensity 

(kW m
-1

) 

moderate 12829 (4075) 1503 (750) 2983 (537) 57.7 (57.7) 71.3 0.13 0.04 <0.01 

severe 26355 (8298) 3154 (1598) 6135 (1084) 123.7 (123.7) 71.5 0.13 0.04 <0.01 

Probability of 

Ignition  (%) 

moderate 21.0 (7.0) 10 (10) 14.3 (5.6) 0.3 (0.3) 38.5 0.84 0.82 0.27 

severe 21.0 (7.0) 10 (10) 14.3 (5.6) 0.3 (0.3) 38.5 0.84 0.82 0.27 
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Table 3.  Rates of land cover change at Makua Military Reservation and Schofield 

Barracks from 1950 to 2011.  Change is given in units of average hectares per year for 

each date range.  Total size for study areas are as follows:  Schofield Grass, 745 ha; 

Schofield Forest, 1576 ha, Makua Grass, 320 ha; and Makua Forest, 1244 ha. 

 

 

1950-

1962 

1962-

1977 

1977-

1992 

1992-

2004 

2004-

2011 

1950-2011 

(mean) 

Schofield Grass      grass 3.0 1.2 2.6 0.7 -5.5 1.2 

woody -2.0 -0.7 -3.2 -1.5 -4.6 -2.1 

bare ground 0.0 -0.1 0.0 0.2 -0.5 0.0 

developed 0.0 0.0 0.0 0.0 0.0 0.0 

shadow 0.0 0.0 0.0 0.0 0.0 0.0 

MTA -1.0 -0.4 0.5 0.6 10.6 0.9 

        Schofield Forest     
grass 

-8.4 -7.3 -2.7 -1.0 -1.1 -4.5 

woody -0.7 10.8 5.3 0.6 0.7 4.0 

bare ground 0.9 -0.9 0.0 0.4 -0.7 0.0 

developed 0.0 0.0 -0.4 -0.2 0.9 -0.1 

shadow 8.5 -4.3 -2.7 0.0 0.0 -0.1 

MTA -0.3 1.8 0.5 0.2 0.1 0.5 

  

1962-

1977 

1977-

1993 

 1993-

2004 

2004-

2010 

 1962-2010 

(mean) 

        Makua Grass          
grass  

7.4 5.0 -6.3 6.8 3.4 

shrub 

 

-5.7 -6.6 8.1 -6.7 -3.0 

tree 

 

-1.9 0.2 -0.2 0.0 -0.6 

bare ground 

 

0.2 0.7 -1.1 -0.1 0.0 

developed 

 

0.0 0.0 0.0 0.0 0.0 

shadow 

 

0.0 0.0 0.0 0.0 0.0 

MTA 

 

0.0 0.8 -0.5 0.0 0.2 

Makua Forest         grass 

 

0.8 9.5 -2.3 10.6 4.2 

shrub 

 

2.0 -1.0 3.9 -19.9  -1.3 

tree 

 

1.0 -1.4 3.3 8.7 1.7 

bare ground 

 

0.4 -0.2 0.1 0.0 0.1 

developed 

 

0.0 0.0 0.0 0.0 0.0 

shadow 

 

-4.2 -6.8 -4.9 0.5 -4.6 

MTA   0.0 0.0 0.0 0.0 0.0 
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Figure 1.  Location of sites for grassland and forest fuels sampling and historical analysis 

on the Waianae Coast and North Shores of Oahu, Hawaii.  Forest and grassland field 

sampling occurred at Dillingham Airfield and Waianae Kai Forest Reserve.  Historical 

land cover change analyses were conducted on imagery from Schofield Barracks and 

Makua Military Reservation. 
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Figure 2.  Land cover at Makua Military Reservation on leeward Oahu, Hawaii from 

1962 through 2010.  The area inside the firebreak is heavily utilized for military training 

activities, and fire is frequent.  The area outside the firebreak has historically been 

forested, has many threatened and endangered species, and is impacted to a lesser extent 

by military activities and fire.   



24 

 

 

Figure 3.  Land cover at Schofield Barracks on leeward Oahu, Hawaii from 1950 through 

2011.  The area inside the firebreak is heavily utilized for military training activities, and 

fire is frequent.  The area outside the firebreak is maintained for woody species, and is 

less affected by military activity and fire. 
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Figure 4.  Change in grass, shrub, and tree land cover classes from 1962-2011 at Makua 

Military Reservation.  Areas of interest (AIO) include:  a) heavily utilized grassland area 

inside firebreak, b) nonnative forest area outside firebreak, and c) the entire Makua 

complex (both AOI’s combined).  
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Figure 5.  Change in grass, woody, and military training area land cover classes from 

1950-2011 at Schofield Barracks.  Areas of interest (AIO) include:  a) heavily utilized 

grassland area inside firebreak, b) nonnative forest area outside firebreak, and c) the 

entire Schofield Barracks complex (both AOI’s combined).   
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Figure 6.  Landscape metrics: a) number of patches, b) contagion, and c) perimeter:area 

ratio for Forest and Grass areas of interest (AOI) at Schofield Barracks and Makua 

Military Reservation from 1950-2011 
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CHAPTER 3.  SPATIAL AND TEMPORAL VARIABILITY OF GUINEA GRASS 

(MEGATHYRSUS MAXIMUS) FUEL LOADS AND MOISTURE ON OAHU, 

HAWAII 

 

Abstract 

Frequent wildfires in tropical landscapes dominated by nonnative invasive grasses 

threaten surrounding ecosystems and developed areas.  To better manage fire, accurate 

estimates of the spatial and temporal variability in fuels are urgently needed.  I quantified 

the spatial variability in live and dead fine fuel loads and moistures at four guinea grass 

(Megathyrsus maximus) dominated sites.  To assess temporal variability, I sampled these 

four sites annually for three years, and also sampled fuel loads, moistures, and weather 

variables bi-weekly at three sites for one year.  Live and dead fine fuel loads ranged 

spatially from 0.85 to 8.66 Mg ha
-1

 and 1.50 to 25.74 Mg ha
-1

, respectively, and did not 

vary by site or year.  Biweekly live and dead fuel moistures varied by 250% and 54%, 

respectively, and were closely correlated (P<0.05) with soil moisture, relative humidity, 

temperature, and precipitation.  Overall, fine fuels and moistures exhibited tremendous 

variation, highlighting the importance of real-time, site-specific data for fire prevention 

and management. However, tight correlations with commonly quantified weather 

variables demonstrates the capacity to accurately predict fuel variables across large 

landscapes to better inform management and research on fire potential in guinea grass 

ecosystems in Hawaii, and throughout the tropics.   
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Introduction   

The introduction and spread of invasive species is one of the leading causes of 

biodiversity loss in Hawaii (Loope, 1998; Loope, 2004; Loope et al., 2004; Hughes and 

Denslow, 2005).  A cycle of positive feedbacks between invasive grasses and 

anthropogenic wildfire is now a reality in many Hawaiian landscapes formerly occupied 

by native woody communities (D'Antonio and Vitousek, 1992; Blackmore and Vitousek, 

2000; D'Antonio et al., 2001).  The synergistic interactions of fire and invasive species 

pose serious threats to the biological integrity and sustainability of remnant Hawaiian 

ecosystems (LaRosa et al., 2008).  Coupled with frequent anthropogenic ignition sources, 

invasive grasses can dramatically increase fire frequency, often with severe consequences 

for native plant assemblages (Vitousek, 1992).   

Guinea grass (Megathyrsus maximus, [Jacq.] B.K.Simon andS.W.L.Jacobs, 

previously Panicum maximum and Urochloa maxima [Jacq.]), originally from Africa, has 

been introduced to many tropical countries as livestock forage (D'Antonio and Vitousek, 

1992; Portela et al., 2009).  It was introduced to Hawaii for cattle forage and became 

naturalized in the islands by 1871 (Motooka et al., 2003).  Guinea grass quickly became 

one of the most problematic nonnative invaders in Hawaiian landscapes because it is 

adapted to a wide range of ecosystems (e.g., dry to mesic) and can alter flammability by 

dramatically increasing fuel loads and fuel continuity.  Year-round high fine fuel loads 

with a dense layer of dead grass in the litter layer maintain a significant fire risk 

throughout the year in guinea grass dominated ecosystems.  In addition, this species 

recovers rapidly following fire by resprouting and seedling recruitment (Vitousek, 1992; 

Williams and Baruch, 2000).  In Hawaii, as well as in many tropical areas, the conversion 

of land from forest to pasture or agriculture and subsequent abandonment has resulted in 

increased cover of invasive grasses across the landscape (Williams and Baruch, 2000).   

Because guinea grass recovers quickly following disturbances (i.e. fire, land use change, 

etc.) and is competitively superior to native species (Ammondt and Litton, 2012), many 

areas of Hawaii are now dominated by this nonnative invasive grass (Beavers, 2001) .   

A small number of studies have examined fuel loads in guinea grass dominated 

ecosystems in Hawaii (Beavers et al., 1999; Beavers and Burgan, 2001; Wright et al., 

2002).  These prior studies, however, have been limited in spatial and temporal extent 
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and their representativeness of the larger landscape is unknown.  The reported variability 

in fuel loads in guinea grass stands in Hawaii is tremendous, ranging from 9.7 to 30.4 Mg 

ha
-1

, but it is unknown what drives this variability. These overall values are similar to 

those reported for grass fuel loads in pastures in the larger tropics (Kauffman et al., 1998; 

Avalos et al., 2008; Portela et al., 2009).  In cattle pastures of the Brazilian Amazon 

dominated by a similar grass species and in a similar climate, dead grass comprised 76 to 

87% of the grass fuel load (Kauffman et al., 1998).  These pastures were sampled less 

than two years after the previous fire, demonstrating that the rapid accumulation of dead 

fuels may be the primary driver of fire spread and behavior in these grasslands.  Dead 

fuel moisture in guinea grass in Hawaii has previously been reported to show a strong 

diurnal pattern (>20% increase at night) and an over 50% increase in dead fuel moisture 

content after precipitation events (Weise et al., 2005).  In similar tropical grasslands, 

variability in fuel moisture has been shown to be closely related to total fuel biomass and 

has been accurately predicted using climate variables (de Groot et al., 2005; Weise et al., 

2005) 

In Hawaii, little is known about fine fuel loads, one of the primary drivers of 

wildland fires.  Research quantifying the spatial and temporal variability of fine fuels, 

ratio of live:dead fuels, fuel moisture content, and how these variables may relate to 

current and antecedent weather conditions and time since fire are largely lacking and 

urgently needed.  To accurately predict and manage fire behavior in areas dominated by 

guinea grass fuels, it is imperative to first determine the spatial and temporal variability 

in guinea grass fuel loads, particularly for dry areas of the island (Giambelluca et al., 

2011) where anthropogenic fire starts are common and risk of fire is greatest.  In 

addition, it is imperative to determine what drives this spatial and temporal variability in 

fuel loads across the landscape to improve predictive capacity and better inform 

management decisions. Without improved fire prediction capability and rapid fire 

management response, wildland fires will continue to alter the composition and structure 

of these landscapes, contribute to the loss of native species diversity, and perpetuate the 

invasive grass/wildfire cycle in guinea grass dominated ecosystems.   

The overall goal of this study was to conduct an assessment of the spatial and 

temporal variability in guinea grass fuels (live and dead fuel loads and moistures) on high 
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fire risk areas on the Waianae Coast and North Shore of Oahu, Hawaii.  Specific 

objectives included quantifying the: (i) spatial variability in live and dead fine fuel loads 

in guinea grass ecosystems in high fire risk areas; (ii) temporal variability at multiple 

scales (interannual, intraannual, and fine-scale [3x/week]) in fuel loads and fuel 

moistures in guinea grass ecosystems in high fire risk areas; and (iii) relationship between 

weather variables (precipitation, relative humidity, windspeed, and temperature) and fine 

fuel loads and moistures to explore predictive capacity to inform fire management of 

guinea grass ecosystems in Hawaii. 

 

Methods 

Spatial and interannual variability in guinea grass fuels 

Research was initiated in the summer of 2008 to quantify the spatial and interannual 

variability of fuel loads in nonnative-dominated guinea grass ecosystems on Oahu’s 

Waianae Coast and North Shore Areas (Figure 1).  Sites were located at Schofield 

Barracks, Makua Military Reservation, Waianae Kai Forest Reserve, and Dillingham 

Airfield (Table 1) to encompass the widest range of spatial variability in environmental 

conditions occurring on the leeward, fire-prone area of Oahu.  All sites have been heavily 

utilized by anthropogenic activity (i.e. military training, abandoned agricultural land) and 

are currently dominated by guinea grass with some invasive Leucaena leucocephala 

(Lam.) de Wit in the overstory.  There is seasonal variability in precipitation patterns, 

with most precipitation falling in the winter months of November through April 

(Giambelluca et al., 2011).   All study sites have deep, well drained soils which 

originated in alluvium and/or colluvium weathered from volcanic parent material (Table 

1).  Soils at Dillingham Airfield in the Lualualei series (fine, smectitic, isohyperthermic 

Typic Gypsitorrerts) formed in alluvium and colluvium from basalt and volcanic ash.   At 

Makua, soils in some sample plots are also in the Lualualei series, and some have been 

classified broadly as Tropohumults-Dystrandepts.  Soils at Waianae Kai are in the Ewa 

series (fine, kaolinitic, isohyperthermic Aridic Haplustolls) formed in alluvium weathered 

from basaltic rock.  At Schofield Barracks, soils are in the Kunia series (fine, parasesquic, 

isohyperthermic Oxic Dystrustepts) which formed in alluvium weathered from basalt 

rock (Table 1).   
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Fuels were quantified by selecting and measuring at least three plots at each site. 

Six plots were sampled at Makua due to a wider range of expected fuel loads at this site.  

Plots were selected based on continuous grass and limited overstory tree cover using 

satellite imagery.  Each plot was initially measured in the summer of 2008, and a subset 

of plots was remeasured in the summers of 2009 and 2010.  One plot at Waianae Kai 

Forest Reserve and two plots at Schofield Barracks were abandoned after the 2008 

sampling due to cattle and military activity, respectively, and the remaining two plots at 

Waianae Kai were abandoned due to cattle activity after the 2009 sampling. 

Fuel parameters measured during yearly plot visits were: (i) total fine fuel loads 

(standing live and dead, and litter), (ii) fuel composition (live and dead grass and herbs), 

and (iii) fuel moisture content for both live and dead grass fuels.  At each 50 x 50 m 

sampling plot, three parallel 50m transects were established 25m apart, and all 

herbaceous fuel was destructively harvested in six 25 x 50 cm sub-plots at regularly-

spaced fixed locations along each transect (n=18/plot).  Subsequent years’ samples were 

offset 3 m from previously clipped subplots.  Samples were separated into the following 

categories: live grass, live dicots, standing dead grass, standing dead dicots, and surface 

litter.  Samples were collected, placed into plastic bags to retain moisture, weighed within 

6 hours of collection, dried in a forced air oven at 70
o
C to a constant mass, and re-

weighed to determine dry mass and moisture content relative to oven dried weight.  Some 

live and dead woody fuels existed in my study sites, but I was primarily interested in 

characterizing fine fuels associated with guinea grass, so did not include woody fuels in 

my analyses.  Overall, live trees were infrequent in most plots, comprising only 5.8% of 

the total fuel load on average (range of 0-22%).  Dead woody fuels, in turn, constituted 

only 0.5% of the total fuel load on average (range of 0-5%). 

 

Intraannual temporal variability in guinea grass fuels  

Intraannual variability of live and dead fuel loads and moisture content was measured 

approximately biweekly (27-33 sample dates per site) for one year (October 8, 2009 

through September 24, 2010) in three plots on leeward Oahu – Dillingham Ranch 

(immediately adjacent to the Dillingham Airfield sites), Schofield Barracks, and 

Yokohama State Park (proxy for adjacent Makua, where access is limited due to 
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unexploded ordinance; Figure 1; Table 1). All sites were dominated by guinea grass, with 

scattered L. leucocephala in the overstory.  Soils at Schofield are in the Kunia series and 

soils at Yokohama are in the Lualualei series (see soils descriptions above).  At 

Dillingham Ranch, soils are in the Kawaihapai series (fine-loamy, mixed, superactive, 

isohyperthermic Cumulic Haplustolls), which are well drained soils that formed in 

alluvium derived from basic igneous rock (Table 1).   

At each sampling location, one 50m transect was established per sample date, 

along which all vegetation and litter in 25x50 cm subplots at 6 locations (0, 10, 20, 30, 

40, and 50m marks) was clipped and collected.  Each subsequent transect was offset one 

meter from and parallel to the previous sampling transect, with all transects running 

parallel to the slope.  Live and dead (standing dead and litter combined) fine fuels were 

processed for moisture content and total dry weight, as described above.  Additionally, 

soil volumetric water content in the top 12 cm of mineral soil was quantified in every 

subplot at each sampling date with a CS620 HydroSense Water Content Sensor 

(Campbell Scientific, Logan, Utah). Six measurements were taken adjacent to each 

subplot, and averaged across subplots for each sampling date. 

 

Fine-scale temporal variability in guinea grass fuels  

To gain a better understanding of changes in fuel moistures following precipitation events 

at a finer temporal resolution, I measured live and dead fuel moistures three times per 

week for 4 weeks at the Dillingham Ranch site.  The first sampling event corresponded to 

the first week of Fall rains (November 1, 2010).  At each sampling date, six randomly 

located samples of live grass and standing dead grass were collected, one each from six 

randomly located sampling locations.  Vegetation samples were processed to determine 

moisture content as described above.    

 

Analysis of spatial and interannual temporal variability of guinea grass fuels   

Due to significant imbalance and heteroskedasticity in the data, I used a repeated 

measures mixed model analysis to determine whether differences exist in fine fuels which 

could be attributed to site (spatial) or year sampled (temporal) variability.  Response 

variables examined in separate analyses were live fine fuels (live grass + live herbs), dead 
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fine fuels (standing dead grass + litter + dead herbs), and total fine fuels (all live and dead 

fine fuel components).    Plots were treated as subjects, to account for the repeated 

measurements taken over time.  Site was treated as a fixed factor, year was treated as a 

random factor, and the interaction between site and year was tested to determine whether 

there was a differential pattern over time at separate sampling sites. Restricted maximum 

likelihood estimates (REML) of parameter values were derived using IBM SPSS v.20 

(IBM SPSS, Inc., Chicago, IL) and SAS 9.2 for Windows (SAS Institute Inc., Cary, NC, 

USA).  REML is preferred to maximum likelihood (ML) as it gives unbiased estimates of 

covariance parameters by taking into account the loss of degrees of freedom from 

estimating the fixed effects in the model (West et al., 2007).  At least four covariance 

structures were considered for each response variable, and the best fitting structure was 

chosen based on available information criterion (-2 log likelihood, Akaike’s Information 

Criterion, Schwarz’s Bayesian Criterion) (West et al., 2007).  A heterogeneous Toeplitz 

structure was selected for all response variables.  Significance of random effects was 

determined by REML-based likelihood ratio tests between full and reduced models (West 

et al., 2007; McCulloch et al., 2008).  Significance of fixed site effect was determined by 

least squares F-tests, with significance determined at α=0.05.  Post-hoc multiple 

comparisons using the least square difference method were performed to elucidate 

differences between individual sites. 

 

Analysis of intraannual temporal variability of guinea grass fuels    

A repeated measures mixed model analysis was used to determine whether there was a 

difference in fine fuel load or fuel moisture which could be attributed to site or time 

sampled.  Additionally, I was interested in potential relationships between fuel load and 

fuel moisture, and onsite weather variables (antecedent precipitation, maximum 

windspeed, relative humidity, and air temperature).  Response variables examined in 

separate analyses were live fine fuels (live grass and live herbs), dead fine fuels (standing 

dead grass, litter, and dead herbs), total fine fuels (all live and dead fine fuel 

components), live fuel moisture content, and dead fuel moisture content.    Site and 

sample week were both treated as fixed factors, as I was interested in all the levels of 

each factor.  Weather data were downloaded from onsite Remote Automated Weather 
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Stations (RAWS) at each sampling site, and variables were chosen as covariates based on 

bivariate correlations between weather and response variables.  An iterative backwards 

model selection process was used to determine which explanatory variables contributed 

to the best model fit, starting with a full model with all covariates and two-way 

interactions but without the site and time factors.  The model was iteratively reduced by 

removing terms which were not significant by least-squares F-tests at α=0.05.  After the 

best covariate-only model was determined, site and time factors were added to see if they 

explained any additional variability in the data.  Weather covariates considered in each 

model were 7 day antecedent precipitation (Precip), 7 day average maximum air 

temperature (Temp), and 7 day average minimum relative humidity (RH).  Additionally, 

soil moisture content (SM) was included as a potential explanatory covariate.  While fuel 

parameters, particularly fuel moisture can change on very short time scales (i.e. hourly) 

(Viney, 1991), for fire management (i.e. planning prescribed fires, estimating needed 

suppression resources, etc.) it is also useful to understand how longer scale (ie daily, 

weekly) climate patterns affect fuel moisture.  After examining relationships between 

weather variables at multiple intervals (daily, 3, 5, 7, 10, and 14 day averages), 7 day 

average provided the most effective relationship with fuel moisture.  REML estimates of 

parameter values were derived using IBM SPSS v.20 (IBM SPSS, Inc., Chicago, IL).  At 

least four covariance structures were considered for each response variable, and an 

autoregressive structure was chosen based on available information criterion for all 

response variables.  Significance of fixed effects was determined by least squares F-tests 

at α=0.05, and post-hoc multiple comparisons using the least square difference method 

were performed to elucidate differences between individual sites. 

 

Analysis of fine scale temporal variability of guinea grass fuels 

The change in live and dead fine fuel moisture at the finer temporal resolution (3 times 

per week for 4 weeks) was analyzed using backwards stepwise linear regression, with 

weather covariates derived from onsite RAWS as described above (Precip, Temp, RH).  

Additionally, 7 day average maximum sustained windspeed (Wind) was used as a 

covariate. Because I wanted to see how antecedent weather altered fuel moisture between 

sampling dates, I used the change (Δ) in live and dead fuel moistures from one sampling 
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date to the next as the response variables.  All covariates and two way interactions 

between covariates were considered for inclusion in linear regression models, and were 

iteratively removed based on non-significant F-tests, with α= 0.15 used as the criteria to 

enter or remove terms from possible models.  

 

Results 

Spatial and interannual temporal variability in guinea grass fuels 

Total fine fuel loads ranged widely across sites and years, from 3.26 to 34.29 Mg ha
-1

. 

Total fine fuels did not vary significantly by site (P=0.17).  Live and dead fine fuel loads 

ranged from 0.85 to 8.66 Mg ha
-1

 and 1.50 to 25.74 Mg ha
-1

, respectively.  Neither live 

(P=0.29) nor dead (P=0.11) fine fuels varied by site. At all four sites, there was more 

dead fine fuel (standing dead leaves and sheaths and litter) than live fine fuel, with the 

live:dead ratio ranging from 0.21 in plots at Makua to 0.65 at Schofield Barracks.   

The among-years variance component for total fine fuel loads was estimated to be 

zero (P=1.00), indicating that there were no consistent year effects across all sites.  There 

was, however, strong evidence that sites varied differently over time (site*year 

interaction; P<0.01; Figure 2). Makua and Schofield showed a trend of increasing fine 

fuel loads over time, while Waianae Kai had fairly constant fuel loads over time and 

Dillingham site had highest fine fuel loads in 2009.  Similarly, there was no consistent 

year effect in either live (P=1.00) or dead (P=1.00) fine fuel loads, but the change in both 

live and fine fuels over time differed across sites (site*year interaction, P<0.01 for both 

dead and live; Figure 2) 

 

Intraannual temporal variability in guinea grass fuels 

There was considerable temporal variability in total fine fuel loads on a bi-weekly scale 

at all three sampled sites (intraannual temporal sites, Figure 1).  While total fuel loads 

varied considerably from one sample date to the next, there was a general trend of higher 

fuel loads in the late spring and early summer than in the fall and winter (Figure 3).  

Weather covariates and soil moisture were poor predictors of total fine fuels (Table 2).  

The best model for total fine fuels contained only the site factor (P<0.01), with both 
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Dillingham Ranch (P<0.01) and Schofield Barracks (P<0.01) having significantly more 

total fine fuels than Yokohama (Figure 3, Table 2).    

 Soil moisture (P=0.01), Temp (P<0.01), RH (P<0.01), and the Temp*RH 

interaction (P<0.01), were all significant predictors of the variability in live fine fuel 

loads over the sampled year (Table 2).  In a model including these weather covariates, 

increases in temperature (model estimate = 2.94) and relative humidity (estimate =1.91) 

increased live fine fuel loads, while increases in soil moisture (estimate = -0.11) and in 

the Temp*RH interaction (estimate = -0.06) resulted in small decreases in live fine fuels.  

Live fine fuel loads varied by site (P<0.01), with lower fuels at Yokohama (1.28-6.30 Mg 

ha
-1

) than either Dillingham Ranch (2.12-14.80 Mg ha
-1

; P<0.01) or Schofield Barracks 

(3.20-15.16 Mg ha
-1

; P<0.01).  

Weather and soil moisture covariates were not strong predictors of the variability 

in dead fine fuels (Table 2).  Differences based on study site were marginally significant 

(P=0.06, Table 2), with more dead fine fuel at Dillingham Ranch (8.19-28.61 Mg ha
-1

; 

P=0.03) and Schofield Barracks (8.19-29.39 Mg ha
-1

; P=0.04) than at Yokohama (9.01-

23.09).   

 Moisture content of fine fuels was quite variable over time, with large changes 

seen between sampling weeks (Figure 5).  Weather covariates and soil moisture were 

good predictors of the measured changes in live and dead fuel moistures over the year 

sampled.  The best model for live fuel moisture included soil moisture (estimate = 2.90; 

P<0.01), Temp (estimate = -39.06; P<0.01), RH (estimate = -15.63; P=0.06), and the 

Temp*RH interaction (estimate = 0.63; P=0.03, Table 2), and there was no evidence for 

additional variability in the data being explained by site differences (P=0.23).  Live fuel 

moisture was generally higher in the Winter and Spring than in the Summer and Fall, but 

rapid changes were often seen between sampling dates with changes in weather events 

(e.g., precipitation).   

 Dead fine fuel moisture was similarly lowest in the Summer and Fall across all 

three sites, with higher moistures and greater variability measured in the Winter and 

Spring.  The model that best explained the variability seen in dead fuel moisture included 

soil moisture (estimate = 0.39; P<0.01), Temp (estimate = 4.24; P<0.01), RH (estimate = 
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2.98; P<0.01), Precip (estimate 1.56; P=0.02), Temp*RH (estimate = -0.09; P<0.01), and 

Temp*Precip (estimate = -0.05; P=0.02, Table 2), but not sample site (P=0.10). 

 

Fine-scale temporal variability in guinea grass fuels 

At a finer temporal scale (3 sampling dates per week for four weeks), fuel moisture could 

not be accurately predicted using selected weather covariates.  While there appeared to be 

a trend of increasing fuel moisture following rainfall events (Figure 5), predictive 

relationships between weather variables and fuel moisture were not evident with the data 

collected.  Live fuel moisture was lowest (115%) on the first sampling date.  After a week 

with multiple rainfall events, live fuel moisture increased to >300% and remained high 

(between 195-304%) for the duration of the sampling period.  Relationships between 

antecedent weather and change in live fuel moisture were quite weak.  There was a 

suggestive correlation between relative humidity and live fuel moisture (r
2
 = 0.63, 

P=0.05).  Models generated using stepwise linear regression explained little of the 

variability in the data, and none were statistically significant.  The best model (ΔLFM = -

382 - 4.35Wind + 9.20RH; P = 0.11) included only 7 day average maximum windspeed 

(kph) and 7 day average minimum relative humidity (%) as predictor variables, with no 

significant interactions, but this model was not statistically significant; in addition, 

although this model explained nearly half the variation in the response variable (r
 2

 = 

47.3%), its predicted r
 2

 (IBM SPSS, Inc., Chicago, IL) was much lower (r
 2 

pred = 14.3%), 

suggesting that even this simple model was overfitting the data.    

Dead fuel moisture was much less variable than live fuel moisture, ranging from 

14.5% to 27.0% throughout the sampling period.  Relative humidity (7 day average 

minimum) was again the only weather variable significantly correlated with change in 

dead fuel moisture between sampling dates (r
2
 = 0.70, P=0.04).  Models generated using 

stepwise linear regression explained little of the variability in the data, and had no 

predictive power.  The best model (ΔDFM = -141 + 1.26Temp + 2.07RH – 0.279Precip : 

r
2
 = 74.5%; r

 2 
pred = 0.0%; P = 0.11) included only 7 day average maximum temperature 

(C), 7 day average minimum relative humidity (%), and 7 day antecedent precipitation 

(mm) as predictor variables, with no significant interactions.     
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Discussion 

The distribution and arrangement of fuel loads profoundly affect fire behavior across a 

landscape (Rothermel, 1972; Pyne et al., 1996).  Invasive grasses in the tropics alter fuel 

loads, providing a continuous, highly flammable fuel source which perpetuates a cycle of 

fire and further grass invasion (D'Antonio and Vitousek, 1992; Brooks et al., 2004).  A 

better understanding of the spatial and temporal variability in fuel loads and moistures 

associated with invasive grasses is, therefore, integral to fire prevention and management 

in these ecosystems. 

 Previous work on guinea grass fuel loads  has shown that there is great variability 

in this fuel type, but the spatial and temporal scope of these studies has been limited 

(Beavers et al., 1999; Beavers, 2001; Wright et al., 2002; Weise et al., 2005).  In Brazil, 

pronounced temporal variability in guinea grass fine fuel loads has been documented, 

with live fine fuel loads ranging from <1 to 12.5 Mg ha
-1

, and dead fine fuel loads from 

2.5 to 19.0 Mg ha
-1

(Portela et al., 2009).  Similar variability was reported over a 7 year 

study period in Puerto Rico, where total fine fuel loads ranged from 3.6 to 14.3 Mg ha
-1 

(Francis and Parrotta, 2006).   

 My results show even greater variability in guinea grass fuel loads, but generally 

support previously published estimates. Importantly, total fuel loads in mature guinea 

grass stands can vary remarkably, both spatially and temporally, over a relatively small 

island landscape.  My data, like previous work, do not provide clear evidence for 

seasonal patterns in fuel loads (Table 2).  Rather, fluctuations over shorter time periods 

driven by weather characterize this landscape.  The differing temporal patterns observed 

between sites in this study may be due to small scale weather patterns (i.e. precipitation 

events, solar radiation, wind speed and direction), as well as land use and management 

histories (e.g., military training vs. state park).  More dead fuel loads than live were 

consistently observed in this study across all sites and sampling periods, translating to 

landscapes with high ignition potential year-round.   In tropical grassland fuel types, fire 

will no longer spread when dead fuel moisture is above a threshold of ~30-40% moisture 

content (Beavers, 2001; Scott and Burgan, 2005).  Dead fuel moisture in all sampled sites 

was well below this threshold at many sampling periods (Figure 4), indicating that these 
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sites have adequate fuel accumulation and sufficiently low fuel moisture content to 

promote rapid fire spread most of the time.   

Live fuel moisture, which is affected by both biological processes and current and 

antecedent weather, also affects potential fire behavior on the landscape.  Water is a heat 

sink, and must be removed from at least the surface layer of the fuel before ignition is 

possible.  When live fuel moisture is high, ignition is unlikely but as live fuel moisture 

decreases, potential for ignition increases (Pyne et al., 1996).  Rapid increases in live fine 

fuel moisture were observed in this study following precipitation events when relative 

humidity was high, temperatures were low, and soils were moist.  Additionally, an 

interactive effect of temperature and relative humidity was evident, such that fuel 

moisture stayed higher when weather was cool and moist.  

Prediction of fuel parameters using weather covariates was most effective in 

intraannual temporal models.  Live and dead fuel moisture had strong relationships with 

weather covariates (Temp, RH, Soil Moisture, Precip; Table 2).  Fuel moisture is one of 

the most difficult parameters to predict, but one of the most important parameters 

determining fire ignition and spread.  Development of robust, site-specific predictive 

capacity for fuel moisture, such as that provided here, will greatly advance fire modeling 

capacity in tropical landscapes.   

While my intraannual models showed good prediction capacity over the year 

sampled, the most valuable model would be one that could be used on shorter time scales, 

giving managers almost real-time information about fuel moisture conditions.  In my fine 

scale variability sampling, it appeared that  periods of increased fuel moisture followed 

precipitation events (Figure 5), as would be expected, but models describing this 

relationship on short time scales (i.e. daily to weekly) were not effective for prediction, 

perhaps due to the small sample size.  The change in live and dead fuel moisture may be 

a product of many interacting factors, including current and antecedent weather 

(temperature, precipitation, windspeed and direction, insolation, relative humidity, etc.) 

as well as physical and biological processes (soil moisture, soil water holding capacity, 

evapotranspiration, plant water uptake, species specific curing rates, etc.) (Viney, 1991; 

Viney and Catchpole, 1991; Cheney et al., 1993; Nelson Jr, 2000; Weise et al., 2005).  

These complex interactions may make prediction of live and dead fuel moisture difficult 
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on short time scales, but at longer temporal scales (intrannual), these relationships 

improved.   

This research provides an important first step in the management and prevention 

of fire in guinea grass dominated ecosystems in Hawaii by making available a data set 

describing the variability of fuel loads over both space and time.  The conversion of 

native, lowland dry ecosystems to invasive dominated, fire-prone grass ecosystems has 

increased the demand on fuels and fire management agencies.   Important future work in 

guinea grass ecosystems in Hawaii, other island ecosystems, and throughout the tropics 

will be the incorporation of the data presented here into fire prediction modeling tools, 

such as fire behavior and spatial models.   Additional on fuel height, arrangement, and 

continuity will be important for scaling these models across larger spatial scales. With 

this knowledge, managers will be better able to assess potential fire risk and consider 

management strategies in guinea grass dominated ecosystems in Hawaii and throughout 

the tropics.   
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Table 1.  Descriptions of sites sampled for spatial variability in fuel loads and temporal 

variability in fuel loads and fuel moisture. 

Site Elevation 

(m.a.s.l) 

MAP 

(mm)
a 

MAT (°C)
b 

Soil Classification
c 

Dillingham 

Airfield 

4 900 24 Lualualei Series: Typic 

Gypsitorrerts 

Dillingham 

Ranch 

 5 851 24 Kawaihapai Series:  

Cumulic Haplustolls 

Makua 108 864 23 Tropohumults-

Dystrandepts  and 

Lualualei Series: Typic 

Gypsitorrerts  

Schofield 

Barracks 

297 1000 22 Kunia Series: Oxic 

Dystrustepts 

Waianae 

Kai 

193 1134 23 Ewa Series:  Aridic 

Haplustolls 

Yokohama 7 857 24 Lualualei Series: Typic 

Gypsitorrerts 
a
Mean Annual Precipitation (Giambelluca et al., 2011) 

b
Mean Annual Temperature (T. Giambelluca, unpub. data) 

c
(Soil Survey Staff, 2006) 
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Table 2.  Statistical results of separate repeated measures mixed model analyses for 

intraannual temporal variability models. 

Model
a 

Parameter Estimate SE df t-statistic p-value 

  
Total Fine Fuel Biomass (Mg ha

-1
) 

  

 

Intercept 18.65 1.85 16.17 10.09 0.000 

  

 

Site 

       

 

site = Dillingham 9.68 2.60 15.83 3.72 0.002 

  

 

site = Schofield 7.89 2.66 16.92 2.97 0.009 

  

 

site = Yokohama 0.00
b
 0.00

b
   .          .       . 

  Live Fine Fuel Biomass (Mg ha
-1

) 

  

 

Intercept -84.02 28.75 38.62 -2.92 0.010 

  

 

Site 

       

 

site = Dillingham 5.15 1.04 40.85 4.96 0.000 

  

 

site = Schofield 3.07 0.86 26.93 3.56 0.001 

  

 

site = Yokohama 0.00
b
 0.00

b
   .          .       . 

  

 

Temp 2.94 0.96 36.82 3.06 0.004 

  

 

RH 1.91 0.54 37.65 3.52 0.001 

  

 

Soil Moisture -0.11 0.04 74.89 -2.62 0.011 

  

 

Temp*RH -0.06 0.02 35.70 -3.45 0.001 

  Dead Fine Fuel Biomass (Mg ha
-1

) 

  

 

Intercept 14.65 1.32 14.64 11.10 0.000 

  

 

Site 

       

 

site = Dillingham 4.37 1.86 14.37 2.35 0.034 

  

 

site = Schofield 4.33 1.89 15.31 2.29 0.037 

  

 

site = Yokohama 0.00
b
 0.00

b
   .          .       . 

  Live Fine Fuel Moisture (%) 

        

 

Intercept 1119.87 415.38 46.60 2.70 0.010 

  

 

Temp -39.06 14.03 43.35 -2.78 0.008 

  

 

RH -15.63 8.00 46.39 -1.95 0.057 

  

 

Soil Moisture 2.90 0.44 76.05 6.59 0.000 

  

 

Temp*RH 0.63 0.28 43.15 2.29 0.027 

  Dead Fine Fuel Moisture (%) 

  

 

Intercept -136.54 39.61 44.88 -3.45 0.001 

  

 

Temp 4.24 1.30 44.00 3.27 0.002 

  

 

RH 2.98 0.78 46.85 3.81 0.000 

  

 

Soil Moisture 0.39 0.06 47.63 7.03 0.000 

  

 

Precip 1.56 0.65 74.96 2.40 0.019 

  

 

Temp*RH -0.09 0.03 45.71 -3.32 0.002 

  

 

Temp*Precip -0.05 0.02 73.70 -2.33 0.023 

  a 
Estimation method: REML  software: SPSS:MIXED 

      
b 
Yokohama set as reference site 
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Figure 1.  Location of sample sites for spatial and temporal variability sampling in fuel 

loads across the Waianae Coast and North Shores of Oahu, Hawaii.  Black circles 

indicate sites that were sampled during the summers of 2008, 2009, and 2010 (Spatial and 

Interannual Temporal Sites).  White squares indicate sites that were sampled biweekly for 

one year (Intraannual Temporal Sites).  Sites with both a black circle and a white square 

were used for both spatial and temporal sampling.  
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Figure 2.  Spatial variability in aboveground fine fuels in four guinea grass dominated 

sites along the Waianae Coast and North Shore areas of Oahu, Hawaii from 2008-2010.  

Bars are means for each site (Mg ha
-1

), and error bars represent one S.E.  Gray bars 

denote dead fine fuel loads, and black bars live fine fuel loads.   

F
in

e
 F

u
e
l 
B

io
m

a
s
s
 (

M
g
 h

a
-1

)

0

5

10

15

20

25

30
dead 

2008 2009 2010 

Dillingham 

live

2008 2009 2010 

Makua 
2008 2009 2010 

Schofield 
2008 2009       

Waianae Kai 

Site 

Total Site  P=0.17 

 Year  P=1.00 
 Site*Year    * P<0.01 

Live Site  P=0.29 
 Year  P=1.00 

 Site*Year    * P<0.01 
Dead Site  P=0.11 

 Year  P=1.00 
 Site*Year    * P<0.01 

 



46 

 

 

 

 

Figure 3.  Intraannual temporal variability in aboveground fine fuels at three guinea grass 

dominated sites on Oahu, Hawaii from October 2009-September 2010. 
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Figure 4.  Intraannual temporal variability in (a) live and (b) dead fuel moistures at three 

guinea grass dominated sites from October 2009-September 2010 (note: different scales 

on y-axis). 

 

0

50

100

150

200

250

300

350

400

Date

1
0
/1

/2
0
0

9
  

1
1
/1

/2
0
0

9
  

1
2
/1

/2
0
0

9
  

1
/1

/2
0
1

0
  

2
/1

/2
0
1

0
  

3
/1

/2
0
1

0
  

4
/1

/2
0
1

0
  

5
/1

/2
0
1

0
  

6
/1

/2
0
1

0
  

7
/1

/2
0
1

0
  

8
/1

/2
0
1

0
  

9
/1

/2
0
1

0
  

1
0
/1

/2
0
1

0
  

F
u

e
l 
M

o
is

tu
re

 C
o

n
te

n
t 
(%

)

0

10

20

30

40

50

60

Dillingham live 

Schofield live

Yokohama live

Dillingham dead 
Schofield dead 
Yokohama dead 

a. 

b. 



48 

 

 

 

Figure 5.  Fine scale temporal variability in fine fuel moisture at Dillingham Ranch on 

Oahu, Hawaii over four weeks.  Vertical bars denote rainfall events (mm; right y-axis) for 

the three weeks prior to, and during sampling.  Dates without bars had no precipitation.  

Dashed line with closed circles denotes live fuel moisture, and solid line with open 

circles denotes dead fuel moisture.   
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CHAPTER 4.  A CUSTOM FUEL MODEL FOR NONNATIVE GUINEA GRASS 

(MEGATHYRSUS MAXIMUS) ECOSYSTEMS IN HAWAII 

 

Abstract 

The interactive influences of repeated fire and grass invasion in tropical dry forest 

ecosystems often threaten adjacent ecosystems and developed areas.  To better manage 

fire in these ecosystems, improved models of fire potential and behavior are urgently 

needed.  Predicting fire behavior is commonly accomplished with fire models, but their 

real-world utility requires accurate, field-based fuel and microclimate inputs to 

parameterize the models.  The objective of this study was to create a custom guinea grass 

(Megathyrsus maximus) fuel model based upon field-based fuel measurements and in situ 

climate data, for use in the BehavePlus fire modeling software, that accurately predicts 

the spread of fire through guinea grass dominated ecosystems in Hawaii, and ideally 

throughout the tropics.  I hypothesized that this custom fuel model (GG2012) would 

perform better than either national tall grass fuel models (Grass 3, GR8, GR9) or previous 

custom models for guinea grass in Hawaii (Beavers Grass 2) because in situ species-

specific fuels data were used in its parameterization.  Custom and standard models were 

tested using data from five prescribed fires in guinea grass dominated ecosystems in 

Hawaii. Custom fuel model parameters were markedly different from standard models, 

with 69-922% more 1-hr fuels and a much lower live herbaceous fuel load.  The resulting 

high dead:live fuel ratio in the custom model that was based on empirical field data 

resulted in moderate predicted rates of spread (8.1-16.7 m min
-1

) under the lowest fuel 

moisture scenarios, and high flame lengths (2.4-5.9 m) throughout all but the highest fuel 

moisture scenarios.  Of all models tested, the custom model (GG2012) output best 

matched observed rates of spread.  These results suggest that a field based fuel model, 

while time intensive to develop, can improve the accuracy of fire behavior modeling, 

thereby increasing capacity for land managers to manage fire in M. maximus dominated 

ecosystems.  
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Introduction 

Hawaii has a significant problem with wildland fires, particularly in landscapes where 

native woody communities have been invaded and replaced by nonnative grasses 

(Vitousek, 1992; D’Antonio et al., 2000).  Wildfires in Hawaiian ecosystems dominated 

by invasive grasses such as guinea grass (Megathyrsus maximus, [Jacq.]  previously 

Panicum maximum and Urochloa maxima [Jacq.]), are almost exclusively the result of 

anthropogenic ignitions (Beavers, 2001). These wildfires, in turn, negatively impact the 

biological integrity of remnant native plant and animal populations and communities, 

water quality, and human life and property (Smith and Tunison, 1992; LaRosa et al., 

2008).  Invasive grass species typically recover rapidly following fire by resprouting 

and/or seedling recruitment (D’Antonio et. al. 2000, Kartawinata and Mueller-Dombois 

1972; Tunison et al. 1994, 2001), perpetuating the cycle of increased fire and invasion 

known as the invasive grass/wildfire cycle (D'Antonio and Vitousek, 1992; Williams and 

Baruch, 2000).   In order to protect remnant native species and communities, the invasive 

grass/wildfire cycle must be managed and, ultimately, eliminated. In order to do this, a 

much better understanding of the fuel, climatic, and fire behavior components of the 

invasive grass/wildfire cycle is needed.  In particular, models that accurately predict the 

probability of ignition, rates of spread (ROS), and fire intensity are urgently needed to 

predict, control and manage wildfires in Hawaii.   

 Guinea grass, originally from Africa, currently has a pantropical distribution due 

to widespread introductions for livestock forage, and subsequent invasions into natural 

areas (D'Antonio and Vitousek, 1992; Portela et al., 2009).  This problematic invader was 

introduced to Hawaii for cattle forage, became naturalized in the islands by 1871 

(Motooka et al., 2003), and has altered flammability by increasing fuel loads and 

continuity (Chapter 2).  Year-round high fine fuel loads with a dense layer of dead litter 

maintain a significant fire risk throughout the year in guinea grass dominated ecosystems 

(Chapter 3)  Because guinea grass recovers quickly following disturbances (i.e. fire, land 

use change, etc.) and is competitively superior to native species (Ammondt and Litton, 

2012; Ammondt et al., 2012), it now dominates a wide range of ecosystems (dry to wet) 
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in Hawaii (Beavers, 2001) and throughout the tropics (Parsons, 1972; Williams and 

Baruch, 2000).   

The spatial and temporal variability in guinea grass fuel loads in Hawaii has been 

well documented (Beavers, 2001; Wright et al., 2002).  Live and dead fine fuel loads 

range spatially from 0.85 to 8.66 Mg ha
-1

 and 1.50 to 25.74 Mg ha
-1

, respectively, and 

live and dead fuel moistures vary spatially by 250% and 54%, respectively.  These values 

are similar to those reported for tall grass fuel loads in similar pastures throughout the 

tropics (Kauffman et al., 1998; Avalos et al., 2008; Portela et al., 2009).  Potential fire 

behavior across this range of variability in fuels, however, has not been well quantified.  

Fire modeling software programs such as BehavePlus (Andrews et al. 2005) were 

developed to simulate fire behavior and assist in predicting fire danger ratings, and are 

built around Rothermel’s equations describing surface fire spread (Rothermel, 1972).  

These computer simulations predict fire behavior (e.g., ROS and flame length) for fires 

burning in specific vegetation types, providing fire managers with a suite of decision-

making tools.  The model’s predictive capability depends largely, however, on the 

accuracy of input variables such as fuel loads, fuel moisture, live:dead ratios, 

temperature, windspeed, and slope.   

Standard fuel models have been developed for a wide range of ecosystem types to 

serve as input parameters in the BehavePlus modeling framework (Anderson, 1982; Scott 

and Burgan, 2005). However, these standard models do not accurately predict potential 

fire in all fuel types.  As such, many custom fuel models have been developed for 

ecosystem types around the world, to better represent the potential for fire spread 

(Cheyette et al., 2008; Wu et al., 2011; Parresol et al., 2012).  

Standard models do a very poor job of predicting fire behavior in tropical 

grasslands such as those found in Hawaii (Beavers, 2001).   The unique fuels and climate 

of Hawaii likely require custom fuel models to accurately represent fire behavior in 

tropical grassland ecosystems. To address this need,  Beavers (2001) created a custom 

fuel model for guinea grass for a narrow set of fuel conditions (mature and high load 

fuels at minimum fuel moistures), which has been moderately successful at accurately 

predicting fire behavior observed in guinea grasslands burning under extreme fire 
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conditions on Oahu.  When this model was tested outside these conditions, however, it 

underpredicted fire behavior (A. Beavers, personal comm.), indicating a critical need for 

a more robust fuel model that is applicable to a wider range of input data.  Recent work 

has quantified the spatial and temporal variability in guinea grass fuel loads in Hawaii 

(Chapter 3), providing the data necessary for custom fuel modeling across a wide range 

of fuel loads and environmental conditions in this widespread tropical fuel type. 

 The objective of this study was to create a custom fuel model for guinea grass 

using field based measures of fuel characteristics and in situ climate data that accurately 

predicts the spread of fire through guinea grass dominated ecosystems in Hawaii, with 

applicability throughout the tropics.  I hypothesized that this custom fuel model 

(GG2012) would perform better than either national tall grass fuel models (Grass 3, GR8, 

GR9) (Anderson, 1982; Scott and Burgan, 2005) or previous custom models for guinea 

grass in Hawaii (Beavers Grass 2) because in situ species-specific fuels data rather than 

generalized grass fuels parameters were used in its creation.  To test this hypothesis, I 

used in situ fuels data collected on the Waianae Coast and North Shore areas of Oahu, 

Hawaii (Chapter 3) to develop a custom guinea grass fuel model (GG2012).  This fuel 

model as well as three previous standard tall grass models and one previous custom 

guinea grass model were used along with fuel moisture and windspeed data recorded in 

situ to parameterize the BehavePlus fire behavior model to predict potential fire behavior 

across the range of conditions observed in the field.  The three standard and two custom 

fuel models were then combined with fuel moisture and wind values measured at five 

fires in guinea grass ecosystems on Oahu, Hawaii to predict the behaviors of those fires, 

and these predictions were compared with observed fire behavior. 

 

Methods 

Custom Fuel Model creation 

Fuels data used in the creation of a custom fuels model for guinea grass were collected on 

the North Shore and Waianae Coast areas of Oahu, Hawaii, USA between June 2008 and 

September 2010 (Chapter 3).  Sites were located at Schofield Barracks, Makua Military 

Reservation, Waianae Kai Forest Reserve, and Dillingham Airfield to encompass the 
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widest range of spatial variability in environmental conditions occurring on the leeward, 

fire-prone area of Oahu.  All sites are dominated by guinea grass with some invasive 

Leucaena leucocephala (Lam.) de Wit in the area, although none was encountered in 

sample plots.  Sample plots were selected based on continuous grass and limited 

overstory tree cover.  For detailed site descriptions, see Chapter 3.  BehavePlus (version 

5.0.5) fire modeling software (Andrews et al., 2005) was used for all fire behavior 

simulations.  All fuels data needed as input parameters in the BehavePlus 5.0 fire model 

were collected (see Chapter 3 for details), including live and dead fine fuels loads, live 

and dead fuel moisture, and fuel bed depth.  

Fuel load and moisture parameters for the custom fuel model were derived as 

average values observed in the field.  Two plots (Schofield Barracks MF1-1 and MF1-2) 

had lower fine fuel loads than other plots, which was likely an artifact of management 

pressure at the site (military training, repeated herbicide use, and vehicle traffic), and 

were not used in custom fuel model creation.  For all remaining plots, the mean fine fuel 

loads for 1-hr, 10-hr, live herbaceous fuels, and fuel bed depth were used to parameterize 

the model.  Height of the tallest grass blade was measured in each subplot, and fuel bed 

depth was recorded as 70% of the maximum fuel height (Burgan and Rothermel, 1984).  

Live and dead fuel heat contents were measured by bomb calorimetry (Hazen Research, 

Inc., Golden, Colorado, USA).  Previously published values for dead fuel moisture of 

extinction of M. maximus (Beavers, 2001) were used.  One-hour surface area to volume 

ratios were quantified using a LI-3100C portable leaf area meter (Li-Cor, Inc. Lincoln, 

Nebraska) and displacement in water.   

The range of live and dead fuel moistures over one year (Chapter 3) were 

considered in model simulations.  To capture the associated temporal variability  in 

potential fire behavior as a result of changing fuel moisture, I ran model simulations with 

the minimum observed fuel moistures (Live, 48%; Dead 6%), 25
th

 percentile (Live, 99%; 

Dead 13%), mean (Live, 160%; Dead 18%), 75
th

 percentile (Live, 210%; Dead 20%), and 

maximum observed fuel moistures (Live, 294%; Dead 60%). Microclimate variables (air 

temperature, wind) were obtained from nearby RAWS weather stations.  Twenty-ft wind 

speeds of 15 km hr
-1

 and 30 km hr
-1

, which represent the average and extreme wind 
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conditions observed at field sites, were used to simulate moderate and severe fire danger 

scenarios. A wind adjustment factor of 0.4 was used for all plots, to adjust the windspeed 

collected by the RAWS weather stations (20-ft wind speed) to that at the vegetation 

height (midflame wind speed) (Andrews et al., 2005).   An average air temperature 

(22°C) was used for all simulations.  Modeled fire behavior output consisted of 

maximum rate of spread (ROS) (m/min), fireline intensity (kW m
-1

), and flame length 

(m). 

 

Comparisons with previous fuel models 

The new custom fuel model (GG2012) was compared to all prior fuel models which have 

been used in tall tropical grassland ecosystems including:  NFFL Fuel Model 3 “Tall 

Grass” (Anderson  1982), Standard Model GR8 “High Load, Very Coarse, Humid 

Climate Grass” (Scott and Burgan 2005), Standard Model GR9 “Very High Load, Humid 

Climate Grass” (Scott and Burgan 2005), and the previous custom fuel model for guinea 

grass, Beavers Grass 2 (Beavers, 2001).  Simulations for average fuel loads under each of 

the above fuel moisture scenarios (min, 25
th

 percentile, mean, 75
th

 percentile, max) were 

run for each grass fuel model. 

 

Model validation and Statistical Analyses 

Eleven prescribed fires occurred on August 15, 2000 for validation of the Beavers Grass 

2 model (Beavers, 2001).  Of these fires, only five were headfires, an important 

assumption of predictive fire modeling (Rothermel, 1972). Thus, these five headfires 

were the only fires used for fuel model validation comparisons. Due to military training, 

unexploded ordinance, and prohibitive costs of securing suppression resources, I was 

unable to do additional validation fires at this time.  Model simulations using the custom 

GG2012 fuel model, as well as the previous four fuel models and the reported on site fuel 

moisture and weather conditions at the time of the burns, were run for each of the five 

prescribed headfires. Regression relationships between the predicted and observed ROS 

and flame lengths were examined.  Specifically, the slope of each regression line and 

plots of the residuals were examined along with the root mean square error (RMSE) to 



55 

 

 

determine model fit.   The slope of the regression indicates whether the model predicts 

accurately throughout the range of the data, and the root mean square error (RMSE) is a 

measure of the difference between a model prediction and the observed value.  An ideal 

model would have a low RMSE and slope near 1.0. 

 

Results 

Custom Fuel Model creation 

The custom GG2012 fuel model was markedly different from prior tall grass fuel models, 

including the custom Beavers Grass 2 fuel model for guinea grass in Hawaii (Table 1).  

The 1-hour (dead fine) fuel component was higher (11.45 Mg ha
-1

) in my fuel model than 

in any prior model (1.12-8.97 Mg ha
-1

).  Ten-hour dead fuels in the custom fuel model 

(2.86 Mg ha
-1

) were similar to those from the GR8 and GR9 standard fuel models (2.24 

Mg ha
-1

), but lower than the custom Beavers Grass 2 fuel model (6.73 Mg ha
-1

).  The live 

fine fuel component in the custom GG2012 fuel model (3.77 Mg ha
-1

) was lower than all 

other models explored (8.97-20.18 Mg ha
-1

), except the NFFL standard fuel model 3, 

which has no live fine fuel component.  As all of the compared models are grassland 

models, there was no woody fuel component.  Surface area to volume ratios (SA:V) were 

higher in all standard models (49-59 cm
-1

) than those measured in situ for guinea grass in 

Hawaii (34.5-39.3) (Chapter 3).  Fuel bed depth for the custom GG2012 fuel model (78.2 

cm) was also lower than the GR8 (122 cm) and GR9 (152.4 cm) standard models, but 

higher than the NFFL standard model 3 (76.2 cm) or the custom Beavers Grass 2 fuel 

model for guinea grass in Hawaii (57.3). Measured dead and live fuel heat content used 

in the new custom GG2012 fuel model was lower (16,282 and 16,747 kJ/kg, respectively) 

than the default value assumed by all prior fuel models used here (18,622 kJ/kg) (Table 

1).   

 When all fire model simulations were run over the range of fuel moistures 

observed in the field (dead, 6-60%; live, 48-294%), the various grass fuel models resulted 

in quite different fire behavior parameters (Figures 1-3).  NFFL standard model 3, the 

original tall grass model (Anderson, 1982), had a fairly low dead fuel input, with no live 

grass portion, giving predicted fire behavior that was consistently one of the fastest 
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moving (ROS of up to 65.8 m min
-1

; Figure 2), particularly under the higher windspeed 

scenario.  Flame lengths in the NFFL standard model 3, however, were moderate (0-5.2 

m) due to overall lower total fuel loads (Figure 1). GR8 and GR9 standard models (Scott 

and Burgan, 2005) predicted high intensity, fast moving fires (ROS up to 119.5 m min
-1

) 

at the minimum fuel moistures (Figures 2 and 3), but all output parameters drop off to 

well below that of other models in all other moisture scenarios due to the large live fuel 

load input (Table 1).  The previous custom fuel model for guinea grass in Hawaii, 

Beavers Grass 2 (Beavers, 2001), predicted lower intensity fires (ROS ≤16.7 m min
-1

; 

flame lengths ≤5.9m) at low fuel moisture than any of the standard grass models, and fire 

behavior declined steadily with increasing live and dead fuel moisture (Figure 2).  At the 

75
th

 percentile moisture scenario, the Grass 2 standard fuel model predicted ROS of 1.5-

3.1 m min
-1

 and flame lengths of 1.4-2.0 m.  The custom GG2012 fuel model showed a 

very similar pattern of declining fire behavior with increasing fuel moisture as the Grass 

2 fuel model, but with ROS 79-207% higher than the Grass 2 fuel model, with greater 

differences at low fuel moistures (Figure 2).  Flame lengths were consistently higher (9-

71%) in the new custom fuel model than Grass 2 (Figure 1). 

 

Model validation and Statistical Analyses 

Comparisons of observed ROS and flame lengths (Beavers, 2001) with those predicted 

by the five fuel models, showed that while none of the models perfectly predicted fire 

behavior, the custom GG2012 fuel model presented here does improve on prior model 

predictions (Tables 2 and 3; Figures 4 and 5).  Flame lengths were consistently 

overpredicted by GR8 and GR9 standard fuel models, and underpredicted by NFFL 

standard fuel model 3 Beavers Grass 2 and the new GG2012 fuel models (Figure 4).  

Regression results showed that all models had high R
2
 values (≥0.94) and significant P-

values (≤0.01).  The slope of the regression line, however, is a better estimate of how 

well the model is predicting throughout the range of data, and an ideal model would have 

a high R
2
, a low RMSE, and a slope near 1.0.  The GR8 and GG2012 models had the 

lowest RMSE (1.7; Table 2), indicating the best fit between model predictions and 

observed flame lengths.  However, the GR8 standard fuel model consistently 
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overpredicted flame lengths (slope = 0.82), and the GG 2012 model underpredicted flame 

length (slope = 1.50) (Table 2, Figure 4).   

 Rate of spread was greatly overpredicted by all standard fuel models, particularly 

for higher intensity fires (Figure 5), with the GR9 standard fuel model again showing the 

greatest departures from observed fire behavior.  Both custom models for guinea grass in 

Hawaii underpredicted ROS, but GG2012 was a moderate improvement over Beavers 

Grass 2.  All fuel models had high R
2
 values (≥0.94) and significant P-values (≤0.01) for 

ROS.  Slope of the regression ranged from 0.22-0.41 for standard models (Table 3), 

indicating that ROS was less well predicted with more intense fire behavior (Table 3; 

Figure 5).  While the custom GG2012 fuel model consistently underpredicted ROS, the 

slope (1.40) was closest to 1.0 and the RMSE was lowest (4.0), indicating that it 

predicted fire rate of spread most consistently and accurately across the range of data. 

 

Discussion 

Accurate prediction of potential fire behavior is critical in Hawaii and throughout the 

tropics, where invasive grasses, climate change, and increased anthropogenic ignition 

sources interact to alter fire regimes and threaten remnant native ecosystems and 

surrounding developed areas (D'Antonio andVitousek, 1992; Mack andD'Antonio, 1998; 

Williams andBaruch, 2000).  With improved knowledge of expected fire behavior, land 

managers can make informed decisions on the pros and cons of prescribed fire, military 

live fire training, and human activities.  Additionally, improved fire behavior estimates 

allow managers to better plan for adequate suppression resources in the event of a 

wildfire. 

 Standard fuel models, which were almost exclusively developed outside of the 

tropics, are typically based upon very different assumptions than the conditions that I 

measured in the field (Anderson, 1982; Scott andBurgan, 2005).  Thus, it is not surprising 

that the standard fuel models explored here did not accurately predict fire behavior in 

guinea grass dominated tropical ecosystems in Hawaii.  The original Grass 3 standard 

fuel model (Anderson, 1982) was intended for grasslands and prairies where total fuel 

loads are <7 Mg ha
-1

.   Fuel loads in tropical ecosystems have been shown to far exceed 
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this threshold (Kauffman et al., 1998; Avalos et al., 2008; Portela et al., 2009), and 

guinea grass fuel loads in Hawaii have been measured at much higher levels as well (11-

30 Mg ha
-1

; Chapter 3).  The GR8 and GR9 standard fuel models were intended for tall, 

humid climate grasslands with high (16.4-20.2 Mg ha
-1

) live herbaceous fuel loads (Scott 

and Burgan, 2005), which exceed the average live fuel load measured in guinea grass 

ecosystems in Hawaii by 434-535%  (3.8 Mg ha
-1

; Chapter 3).  Because these are 

dynamic models, a portion of the live fuel load is transferred to the dead fuel category as 

fuel moisture decreases (Scott andBurgan, 2005).  This modeled ‘curing’ is responsible 

for low intensity fire behavior predictions at high fuel moisture and extreme fire behavior 

predictions at low fuel moisture.  These standard fuel models do not represent guinea 

grass fuels well, as previous data has shown that guinea grass fuel loads maintain a large 

dead component year-round, with a much lower live grass fuel load (Chapter 3).   

 Prior custom fuel model work for guinea grass in Hawaii dramatically improved 

ability to predict fire behavior in these grasslands (Beavers, 2001).  However, because 

this custom fuel model was intended for use only in mature guinea grass stands under the 

lowest moisture conditions (i.e., conditions conducive to extreme fire behavior), it cannot 

readily be extrapolated to larger spatial and temporal scales where fuel conditions vary 

dramatically (Chapter 3).  With the recent collection of fuels data over a large range of 

spatial and temporal variability in guinea grass (Chapter 3), adequate data are now 

available to expand on prior custom fuel modeling work.  With the limited actual fire 

behavior data available (n=5), it is difficult to quantify the conditions under which these 

custom fuel models for guinea grass in Hawaii accurately predict fire behavior, and 

where they need refinement.  The wide range of fuel loads and fuel moistures measured 

in Hawaii (Chapter 3) may justify having multiple custom fuel models (low, moderate, 

and high fuel loads, for example) to more accurately represent this fuel type and the wide 

range of environmental conditions where it occurs.  Multiple fires to validate each of 

these custom fuel models, however, would be critical to ensure their reliability in 

predicting fire behavior.   

 Accurate prediction of fire behavior is critical for management not only in 

Hawaii, but throughout tropical grasslands where native species, ecosystem function, and 
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human life and property are at risk from frequent anthropogenic ignitions.  Models that 

accurately predict the behavior of a current or potential fire guide management decisions 

in several important ways.  First, when an actual fire occurs, knowledge of expected 

flame lengths and ROS can help managers plan for the fire suppression resources needed 

to control the fire.  Similarly, prescribed fires, along with human activities likely to result 

in unintended fires (e.g., military live fire training), can be planned when danger of fire 

escaping the desired burn area is low, and the fire personnel and resources on site are able 

to contain any unexpected spot fires or changes in weather (i.e. shift in wind speed or 

direction).  Finally, custom fuel models can also be used to simulate the difference in 

expected fire behavior due to fuels management treatments such as grazing (Evans et. al., 

unpublished data), herbicide and mechanical fuels reduction treatments (Ansari et al., 

2008), and restoration activities (Ammondt et al 2012, Chapter 3).   

 As hypothesized, the custom fuels model for guinea grass based on field data 

across a wide range of spatial and temporal variability outperformed national standard 

fuel models (Anderson, 1982; Scott and Burgan, 2005), as well as a previous custom fuel 

model for guinea grass ecosystems in Hawaii (Beavers, 2001), when tested against 

limited available observed fire behavior data.  However, because of the large range of 

variability in fuel loads and moistures observed for guinea grass in Hawaii (Chapter 3), I 

believe that multiple validated models may be needed to more precisely describe 

expected fire behavior in ecosystems dominated by this species.
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Table 1. Input parameters for BehavePlus fire simulations in guinea grass dominated ecosystems on Oahu, Hawaii. 

BehavePlus Input 

NFFL Fuel 

Model 3
a
 

Standard 

GR8
b 

Standard 

GR9
c
  

Grass 2 

(Custom)
d
  

GG2012 

(Custom)  

1-hr fuel load (Mg ha
-1

) 6.75 1.12 2.24 8.97 11.45 

10-hr fuel load (Mg ha
-1

) 0 2.24 2.24 6.73 2.86 

Live herb fuel load (Mg ha
-1

) 0 16.36 20.18 8.97 3.77 

Live woody fuel load (Mg ha
-1

) 0 0 0 0 0 

1-hr SA/Vol (cm
-1

) 49.21 49 59 39.3 35 

Live herb SA/Vol (cm
-1

) 49.21 43 52 36.1 34.5 

Fuel bed depth (cm) 76.2 122 152.4 57.3 78.2 

Dead fuel moisture of extinction (%) 25 30 40 40 40 

Dead fuel heat content (kJ/kg) 18622 18622 18622 18622 16282 

Live Fuel heat content (kJ/kg) 18622 18622 18622 18622 16747 

a
“Tall Grass” Anderson 1982; 

b
 “High Load, Very Coarse, Humid Climate Grass” (Scott and Burgan 2005); 

c
“Very High Load, Humid 

Climate Grass” (Scott and Burgan 2005); 
d
“Grass 2” (Beavers 2001) 
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Table 2.  Summary of flame length regression statistics for three standard and two custom 

fuel models for guinea grass in Hawaii.  The slope of the regression indicates whether the 

model predicts accurately throughout the range of the data, and the root mean square 

error (RMSE) is a measure of the difference between a model prediction and the observed 

value.  An ideal model would have a low RMSE and slope near 1.0. 

 

 

 

 

 

 

 

  

Model RMSE           Slope 

NFFL Model 3 2.1 1.57 

Standard GR8 1.7 0.82 

Standard GR9 4.2 0.59 

Grass 2 1.9 1.61 

GG2012 1.7 1.50 
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Table 3.  Summary of rate of spread regression statistics for three standard and two 

custom models for guinea grass.  The slope of the regression indicates whether the model 

predicts accurately throughout the range of the data, and the root mean square error 

(RMSE) is a measure of the difference between a model prediction and the observed 

value.  An ideal model would have a low RMSE and slope near 1.0. 

 

 

 

 

  

Model RMSE Slope 

NFFL Model 3 22.8 0.41 

Standard GR8 26.4 0.38 

Standard GR9 54.2 0.22 

Grass 2   7.7 2.40 

GG2012  4.0 1.40 
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Figure 1.  Predicted flame lengths for 3 three standard (NFFL, GR8, and GR9) and two 

custom (Grass 2 and GG 2012) fuel models under a range of fuel moisture conditions at 

windspeeds of a) 15 kph and b) 30 kph.  Moisture scenarios are based on in situ fuel 

moisture conditions in guinea grass sites on Oahu, Hawaii:  Minimum (Live fuel moisture 

48%, Dead fuel moisture 6%), 25
th

 percentile (Live 99%, Dead 13%), Mean (Live 160%,   

Dead 18%), 75
th

 percentile (Live 210%, Dead 20%), and Maximum (Live 294%, Dead 

60%).    
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Figure 2.  Predicted rates of spread for 3 three standard (NFFL, GR8, and GR9) and two 

custom (Grass 2 and GG 2012) fuel models under a range of fuel moisture conditions at 

windspeeds of a) 15 kph and b) 30 kph.  Moisture scenarios are based on in situ fuel 

moisture conditions in guinea grass sites on Oahu, Hawaii:  Minimum (Live fuel moisture 

48%, Dead fuel moisture 6%), 25
th

 percentile (Live 99%, Dead 13%), Mean (Live 160%,   

Dead 18%), 75
th

 percentile (Live 210%, Dead 20%), and Maximum (Live 294%, Dead 

60%).    
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Figure 3.  Predicted fireline intensity for 3 three standard (NFFL, GR8, and GR9) and 

two custom (Grass 2 and GG 2012) fuel models under a range of fuel moisture conditions 

at windspeeds of a) 15 kph and b) 30 kph.  Moisture scenarios are based on in situ fuel 

moisture conditions in guinea grass sites on Oahu, Hawaii:  Minimum (Live fuel moisture 

48%, Dead fuel moisture 6%), 25
th

 percentile (Live 99%, Dead 13%), Mean (Live 160%,   

Dead 18%), 75
th

 percentile (Live 210%, Dead 20%), and Maximum (Live 294%, Dead 

60%).    
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Figure 4.  Observed vs. predicted flame length in guinea grass dominated ecosystems in 

Hawaii for three standard (NFFL, GR8, and GR9) and two custom (Grass 2 and GG 

2012) fuel models.  The dotted diagonal line represents the 1:1 line.  Data points and 

regression lines that fall above the 1:1 line have been under-predicted by the model, and 

data points that fall below the 1:1 line have been over-predicted by the model. 
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Figure 5.  Observed vs. predicted rate of spread (ROS) in guinea grass for three standard 

(NFFL, GR8, and GR9) and two custom (Grass 2 and GG 2012) fuel models.  The dotted 

diagonal line represents the line of perfect agreement.  Data points that fall above and to 

the left the line have been under-predicted by the model, and data points that fall below 

and to the right of the line have been over-predicted by the model. 
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CHAPTER 5.  IMPROVED PREDICTION OF LIVE AND DEAD FUEL 

MOISTURE IN INVASIVE MEGATHYRSUS MAXIMUS GRASSLANDS IN 

HAWAII WITH MODERATE RESOLUTION IMAGING 

SPECTRORADIOMETER (MODIS) 

 

Abstract 

The synergistic impacts of nonnative grass invasion and frequent anthropogenic fire 

threaten endangered species and native ecosystems, and adjacent land throughout the 

tropics.  Fire behavior models can be an effective tool in fire prevention and 

management.  However, current models do not accurately predict fire ignition or behavior 

in Hawaii.  Specifically, current models do a poor job at predicting fuel moisture, which 

is a key driver of fire.  To address this shortcoming, I developed empirical models to 

predict real-time live and dead fuel moisture contents in nonnative grasslands in Hawaii 

dominated by Megathyrsus maximus from Terra-MODIS NDVI and EVI2 vegetation 

indices.  MODIS-based predictive models for live fuel moisture were moderately 

effective (R
2
= 0.46), but outperformed the currently used National Fire Danger Rating 

System (R
2
= 0.37) and the Keetch-Byram Drought Index (R

2
= 0.06).  Dead fuel moisture 

prediction was less robust, and was best predicted by a model including EVI2 and NDVI 

(R
2
= 0.19).  More accurate fuel moisture prediction in nonnative grasslands will greatly 

improve management of fire in Hawaii, as well as other tropical ecosystems dominated 

by nonnative grasses. 

 

Introduction 

The introduction and spread of invasive species is a leading cause of biodiversity loss in 

Hawaii (Loope, 2004; Loope et al., 2004; Hughes and Denslow, 2005). Many nonnative 

plant invaders promote more frequent and intense fire regimes, particularly nonnative 

grasses, and the synergistic interactions of fire and these invasive grasses pose serious 

threats to the biological integrity and sustainability of tropical ecosystems worldwide 

(Foxcroft et al., 2010; Miller et al., 2010; Pysek et al., 2012).  The invasive grass/fire 

cycle – a positive feedback between frequent anthropogenic fire and nonnative grass 
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invasion – is now a reality in many landscapes formerly occupied by native woody 

communities.  This feedback has dramatically increased fire frequencies, often with 

severe consequences for native plant assemblages (D'Antonio and Vitousek, 1992).  This 

scenario is particularly evident in areas dominated by guinea grass (Megathyrsus 

maximus [Jacq.], previously Panicum maximum and Urochloa maxima [Jacq.]) in 

Hawaii, as well as throughout the tropics.  Large portions of the landscape that were once 

dominated by diverse tropical plant communities are now covered primarily by 

flammable invasive grasses that pose significant fire threats to remnant native plant 

communities and adjacent human-dominated areas. 

Fire modeling programs such as BehavePlus (Andrews et al., 2005) and the 

National Fire Danger Rating System (Schlobohm and Brain, 2002) were developed to 

simulate fire potential and behavior and to assist in predicting fire danger ratings, thereby 

providing fire managers with a suite of decision-making tools.  The predictive capability 

of these models, however, depends largely on the accuracy of input variables such as fuel 

loads and fuel moisture, along with a suite of microclimate variables, all of which change 

rapidly over short temporal scales (Chapter 3).  The field method most commonly used 

for quantifying fuel moisture, a critical driver of fire occurrence and behavior, is to 

simply measure the proportion of fresh weight:dry weight of a number of samples 

collected from the site of interest.  However, this method is time and labor intensive, and 

provides fuel moisture for only a snapshot in time.  It would be useful for fire behavior 

prediction if fuel moisture for guinea grass could be estimated using remotely-sensed 

data, as has been done elsewhere for other vegetation types (Chuvieco et al., 2002; 

Caccamo et al., 2011).   

Chuvieco et al. (2002) examined the potential to use imagery from the Landsat 

Thematic Mapper (TM) to estimate fuel moisture content in live Mediterranean fuels, and 

found a strong relationship between short-wave infrared (SWIR) reflectance and live fuel 

moisture content for grassland (r
2
= 0.84) and shrubland (r

2
= 0.74) ecosystems.  While 

these relationships highlight the potential for predicting live fuel moisture from remotely 

sensed imagery, the temporal resolution of the TM sensor (~4 images/year) is too coarse 

to make it a useful tool for fire managers.  Terra-Moderate Resolution Imaging 
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Spectroradiometer (MODIS) imagery, on the other hand, has a daily temporal resolution 

which could be more practical for informing fire prevention and management activities.  

Hao and Qu (2007) described an algorithm for predicting live fuel moisture from multiple 

MODIS bands, and demonstrated high correlation between predicted and estimated live 

fuel moisture content (r
2
= 0.77) across several ecosystem types in Georgia, USA.  

Recently, Caccamo et al. (2011) evaluated the use of vegetation indices derived from 

MODIS imagery to monitor fuel moisture in shrubland, heathland, and sclerophyll forest 

ecosystems in south-eastern Australia.  They found that the MODIS-derived vegetation 

indices had far stronger relationships with fuel moisture (R
2
= 0.69) than the previously 

used Keetch-Byram drought index (KDBI; R
2
= 0.15).   

Vegetation indices have been highly successful at relating vegetation properties 

(e.g., cover, phenology, and composition) to spectral signatures.  The Normalized 

Difference Vegetation Index (NDVI) (Huete et al., 2009) is commonly used in a wide 

range of remote sensing applications and has been shown to be a good predictor of 

vegetation characteristics because chlorophylls a and b in green vegetation strongly 

absorb light in the red regions of the electromagnetic spectrum, and plant cell walls 

strongly absorb light in the near infrared region (Glenn et al., 2008).  Vegetation indices 

derived from satellite data, therefore, are good indices of canopy greenness, which in turn 

reflects not only chlorophyll content but also vegetation moisture content.  NDVI utilizes 

a ratio of the difference in reflectance (ρ) in the near infrared (NIR) and red spectral 

bands to their sum as follows:  

redNIR

redNIRNDVI







                  (1) 

NDVI has been shown to be important at measuring vegetation change over time (Jensen, 

2007) and has been applied in many types of vegetation studies such as assessment of net 

primary productivity (Rasmussen, 1998), drought monitoring (Unganai and Kogan, 

1998), and leaf area index (Wang et al., 2005).  NDVI, however, has several limitations.  

Soil color, atmospheric effects and cloud cover greatly diminish the accuracy of NDVI 

values, and this index tends to saturate at high vegetative cover, making it less sensitive 

to differences in vegetation as cover increases.   
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Because of the limitations of NDVI, the Enhanced Vegetation Index (EVI) was 

developed.  EVI is a modified NDVI which adjusts for soil color and atmospheric aerosol 

scattering (Jensen, 2007), and has improved sensitivity to high biomass areas.  This 

improved signal increases the sensitivity of EVI (relative to NDVI) to change in 

vegetation (i.e. greenness).   

LCC
GEVI

blueredNIR

redNIR










21

       (2) 

where G is a gain factor set at 2.5, C1 and C2 are coefficients derived from the use of the 

blue band to correct for aerosol influences in the red band, and are set at 6.0 and 7.5, 

respectively (Jensen, 2007; Jiang et al., 2008).  L is a canopy background adjustment 

term, set at 1.0 (Jensen, 2007).  EVI is now a standard NASA product and is currently 

distributed for free by the USGS.  Easy access to this index makes the MODIS EVI 

product incredibly useful and accessible to researchers and land managers without 

advanced training in processing remotely sensed data.   

The scope of many remote sensing applications (i.e. vegetation, climate, and land 

cover change) is greatly broadened by the use of historical data, and the development of a 

two-band Enhanced Vegetation Index (EVI2) using just the NIR and red spectral bands 

allows researchers to extend the EVI record back over 30 years (Jiang et al., 2008).  EVI2 

was derived by retaining the NIR and red reflectances from the EVI equation as well as 

the gain factor (G=2.5) and the background canopy adjustment term (L=1).  The blue 

band is removed, and a single coefficient C1 becomes 2.4, giving Equation 3:                                            

L
GEVI

redNIR

redNIR










4.2
2                 (3) 

Other, less commonly used indices have also been shown to have strong 

relationships with vegetation moisture.  Visible Atmospherically Resistant Index (VARI) 

correlates well spatially and temporally (0.79≤r
2
≤0.94) with fuel moisture content in 

chaparral ecosystems (Stow et al., 2005; Roberts et al., 2006).  :                                                                                      

blueredgreen

redgreen
VARI








                 (4) 
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NDWI (Normalized Difference Water Index) (Gao, 1996) was shown to have high 

correlations with fuel moisture content in chaparral and oak woodland ecosystems 

(Dennison et al., 2005; Roberts et al., 2006).  NDWI, a NIR based index, is shown in 

equation 5:                                             

21

21

NIRNIR

NIRNIRNDWI







            (5) 

NDII (Normalized Difference Infrared Index) was shown in simulation modeling to be 

related to surface moisture content (Hunt and Yilmaz, 2007), but has not been evaluated 

extensively for its applicability to fuel moisture modeling.  NDII uses NIR and short-

wave infrared (SWIR) spectral bands as shown in equation 6:                

11

11

SWIRNIR

SWIRNIRNDII







            (6) 

Relative greenness (RGRE) (Kogan 1990) is a variation of NDVI using the maximum 

and minimum values over a given time period.  It was developed to account for value 

changes within the pixel due to climate dynamics.  The RGRE index has been used by 

fire managers as an estimate of fuel moisture content of live vegetation (Chuvieco et al. 

2002):                            

100
(min)(max)

(min)
x

NDVINDVI

NDVINDVIi
RGRE




        ` (7) 

where NDVIi is the NDVI value at time period i, NDVI (min) is the minimum index value 

over the study period, and NDVI (max) is the maximum NDVI value over the study 

period.  Using Landsat data, Chuvieco (2002) proposed the use of an integral of 

reflectances in the SWIR and visible bands and found strong correlations (r= 0.91) with 

fuel moisture contents in Mediterranean grasslands.  The integral multiplies the 

reflectances of the visible and SWIR bands by the bandwidths:   

Integral = 0.050 ρ1 + 0.020 ρ3 + 0.020 ρ4 + 0.024 ρ6 + 0.040 ρ7.     (8) 

Remotely sensed MODIS products are available from the NASA Earth Observing 

System Data and Information System (http://reverb.echo.nasa.gov/reverb/).  Daily 

reflectance values are available as well as 8-day composite reflectance values.  The 8-day 

http://reverb.echo.nasa.gov/reverb/
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composites include the best value for each pixel for an 8 day range, giving improved data 

quality but coarser temporal resolution.  Additionally, NASA makes available pre-

processed 16-day EVI and NDVI composites, as well as 16-day reflectance composites.  

Because these data sets are easily accessible, it would be an extremely valuable tool for 

land managers to be able to utilize pre-processed vegetation indices to predict time- and 

site-specific fuel moisture, which could then be used to potentially greatly improve fire 

models in Hawaii and throughout the tropical Pacific. 

Current tools used to predict live and dead fuel moisture on the mainland United 

States have not been widely tested in Hawaii against in situ fuel moisture data (Beavers, 

2001), and it is unclear whether they accurately predict fuel moisture, and thus potential 

for fire.  The National Fire Danger Rating System (NFDRS) is most commonly used by 

agencies in Hawaii as a tool to assess the potential for ignition, spread and difficulty of 

control.  This index is based on the relationships between on-site fuels, weather, and 

topography and is calculated for each station within the Remote Automated Weather 

Station (RAWS) network (Schlobohm and Brain, 2002).  Live and dead (1-hr) fuel 

moistures, in turn, are calculated as intermediates in the NFDRS and can also be obtained 

for any weather station in the network.   

 The Keetch-Byram drought index (KDBI) is a meteorological index designed for 

predicting fire potential, and is based on the cumulative moisture deficiency in the upper 

layers of the soil profile (Keetch and Byram, 1968).  While used widely for fire potential 

prediction, KBDI has been shown to be a poor to moderate predictor of fuel moisture 

content (Dimitrakopoulos and Bemmerzouk, 2003; Pellizzaro et al., 2007; Caccamo et 

al., 2011).  KBDI is used more informally in Hawaii to assess longer term drying trends 

(A. Beavers, personal communication), typically in conjunction with the NFDRS.   

The primary objective of this research was to evaluate the use of vegetation 

indices derived from remotely sensed MODIS data to accurately predict live and dead 

fuel moistures in guinea grass dominated vegetation on leeward Oahu.  Specific 

hypotheses included:  (i) because vegetation indices are a good indicator of vegetation 

greenness, there will be strong relationships between vegetation indices derived from 

MODIS imagery and in situ live fuel moisture content; (ii) because live and dead fuel 
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moisture are closely correlated (Chapter 3), I also expect moderate relationships between 

vegetation indices and dead fuel moisture content; (iii) because EVI performs well in 

areas of high biomass (Jensen, 2007), it will be a stronger predictor of fuel moisture than 

other vegetation indices given the dense grass cover present at the study sites; and (iv) 

daily MODIS data will show stronger predictive relationships with in situ fuel moisture 

than 8-day or 16-day composites, as fuel moisture can change rapidly within a site over a 

short time period, particularly following precipitation events (Chapter 3).  To test these 

hypotheses, I collected in situ live and dead fuel moisture content from three guinea grass 

dominated ecosystems biweekly for one year on the Island of Oahu, and examined 

relationships between these in situ data and vegetation indices derived from MODIS 

reflectance data.   

 

Methods 

In situ fuel moisture data collection 

Bi-weekly in situ fuel moisture samples were collected from October 2009-October 2010 

in guinea grass dominated ecosystems at Schofield Barracks, Yokohama State Park, and 

Dillingham Ranch on the Island of Oahu, Hawaii (Figure 1).  All sites are dominated by 

guinea grass with some invasive Leucaena leucocephala (Lam.) de Wit in the overstory.  

Dillingham Ranch is located at 5 m.a.s.l., with a mean annual precipitation (MAP) of 851 

mm (Giambelluca et al., 2011) and mean annual temperature(MAT) of 24ºC (T. 

Giambelluca, unpub. data). Soils at Dillingham Ranch are in the Kawaihapai series (fine-

loamy, mixed, superactive, isohyperthermic Cumulic Haplustolls), which are well 

drained soils formed in alluvium derived from basic igneous rock.  At Schofield Barracks 

(297 m.a.s.l.; MAP = 1000 mm; MAT = 22ºC), soils are in the Kunia series (fine, 

parasesquic, isohyperthermic Oxic Dystrustepts) which formed in alluvium weathered 

from basalt rock (Table 1).  At Yokohama (7 m.a.s.l.; MAP = 857 mm; MAT = 24ºC), 

soils are in the Lualualei series, (fine, smectitic, isohyperthermic Typic Gypsitorrerts) 

formed in alluvium and colluvium from basalt and volcanic ash.  

On the first sampling date in October 2009, a single 50m transect was established 

in each site.  Starting at the 0m mark of each transect, biomass of all herbaceous plant 
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materials occurring in a 25x50 cm plot was clipped at the soil surface every 10m along 

the transects (n=6/transect).  Samples were taken back to the laboratory and separated 

into the following categories:  live herbaceous vegetation, dead herbaceous vegetation 

and surface litter.  Samples were then weighed, dried in a forced air oven at 70
o
C to a 

constant mass, and re-weighed.   Fuel moisture was the calculated as the ratio of the 

weight of water to the dry weight of the plant material, expressed as a percentage. 

Subsequent weeks’ sampling occurred on parallel transects, with each biweekly sampling 

offset from the prior sampling transect by 1 m.   

 

MODIS data acquisition and processing 

MODIS data products were acquired from the NASA Earth Observing System Data and 

Information System (http://reverb.echo.nasa.gov/reverb/) for all dates corresponding to in 

situ sampling.  The datasets used for these analyses included the following: Surface 

Reflectance Daily L2G Global 250m (MOD09GQ), Surface Reflectance Daily L2G 

Global 1km and 500m (MOD09GA), Surface Reflectance 8-day Global L3 Global 250m 

(MOD09Q1), Surface Reflectance 8-day L3 Global 500m (MOD09A1), and Vegetation 

Indices 16-day L3 Global 250m (MOD13Q1).  Each data product was available in the 

sinusoidal projection.  I used the MODIS Reprojection Tool (NASA Land Processes 

Distributed Active Archive Center [LP DAAC], USGS/Earth Resources Observation and 

Science [EROS] Center, Sioux Falls, South Dakota) to project the data into the Universal 

Transverse Mercator projection zone 4 on the North American Datum 1983.  ENVI 4.5 

(Exelis Visual Information Solutions, Boulder, Colorado) was used to reformat the data 

into a multi-date image cube and create a temporal profile of reflectance for each band at 

each study site location.   

 

Vegetation indices 

Vegetation indices of interest – including NDVI, EVI, EVI2, VARI, NDWI, NDII, 

RGRE, and an integral calculation (Chuvieco et al., 2002) – were calculated separately 

for daily and 8-day reflectance values for the entire one year study period.  16-day NDVI 

and EVI vegetation index products were also obtained, as well as reflectance values for 
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bands 1-3.  MODIS 16-day composite data omits bands 4-7, allowing calculations of only 

a subset of the vegetation indices (EVI2 and RGRE) for this temporal resolution.  

 

NFDRS fuel moisture and KDBI 

KDBI values and NFDRS (1978 system) calculations for live and dead fuel moisture for 

each in situ sampling date were retrieved on June 14, 2012 from the Weather Information 

Management System (WIMS), which is maintained by the National Wildland 

Coordinating Group (https://fam.nwcg.gov/wims/jsp/wims.htm).  Weather data used in 

WIMS calculations was measured near each field site using the RAWS network (WIMS 

tower ID #’s 490308, 490301, and 499902 were used for Dillingham, Yokohama, and 

Schofield sites, respectively).  While there were 116 data points corresponding to in situ 

fuel moisture measurements, only 62% of them (N= 72) could be used in the analysis of 

models including WIMS data due to sensor or data transmission failure.   

 

Statistical Analysis 

Pearson correlation coefficients were calculated with all sites pooled to describe the 

strength of the relationship between each daily, 8-day, and 16-day vegetation index with 

live, dead, and litter fuel moisture.  Because WIMS calculations and fire prediction tools 

(i.e. BehavePlus) do not separate standing dead and surface litter fuel components, 

measurements for dead fuel moisture were weighted by the proportion of the two dead 

fuel components and examined in all analyses as a single variable for regression analyses.  

All independent variables that were significantly correlated with a given dependent 

variable were included in multiple linear regressions both individually and in all possible 

subset combinations to identify the most effective MODIS-based predictor variable(s) for 

in situ live and dead fuel moisture for each temporal scale (daily, 8-day, and 16-day).  

Similarly, the ability of WIMS-calculated KBDI and fuel moisture (live and dead) to 

predict in situ fuel moisture was examined using general linear models.  Finally, the best 

predictor variables for both MODIS-based and WIMS-based were evaluated in hybrid 

models to determine the best predictive relationships between all available fuel moisture 

predictors and in situ measured live and dead fuel moisture at each temporal scale. The 

https://fam.nwcg.gov/wims/jsp/wims.htm
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predicted R
2
 for each model was used as the criterion for selection. I was most interested 

in a general model that accurately predicts live and dead fuel moisture across all guinea 

grass ecosystems on leeward Oahu, Hawaii.  However, because these nonnative, invasive 

guinea grass ecosystems are high fire risk areas, I also evaluated the inclusion of a site 

term in the best predictor model to test whether there was greater capacity to accurately 

predict fuel moisture at a single site than across the larger area of interest.   

  

Results 

In situ fuel moisture  

Live and dead fuel moistures were dynamic throughout the sampling period, ranging 

from 45 to 294% and 6 to 49%, respectively, and sometimes changing rapidly between 

biweekly sampling dates.  Schofield, which had the highest MAP, generally had the 

highest live and dead fuel moisture of all sites, and live fuel moisture at this site never 

dropped below 122%.  In contrast, the Dillingham and Yokohama sites, which are located 

at lower elevations and lower MAP, had frequent periods where live fuel moisture 

dropped well below 100%.  Seasonal patterns were similar across all sites, with highest 

fuel moistures in the winter months, and periods of low fuel moisture in the drier summer 

and fall months (Figure 2).   

 

MODIS-based fuel moisture correlations 

Vegetation indices calculated from daily MODIS data were also dynamic (Figure 2) and 

none were correlated with live, dead, or litter fuel moisture (Table 1; Figure 2), except 

daily EVI values, which were positively and linearly correlated with live fuel moisture (r 

= 0.338; P = 0.001).  Vegetation indices calculated from 8 day composite MODIS data 

had somewhat clearer seasonal patterns (Figure 3) and stronger relationships with in situ 

fuel moisture measurements, with EVI, NDVI, and EVI2 all showing significant 

relationships with live, dead, and litter fuel moisture ((P<0.01; Table 1).  EVI had the 

strongest relationship with live fuel moisture (r = 0.399; P<0.001), while EVI2 had a 

stronger relationship with dead fuel moisture components (r = 0.379; P<0.001 for 

standing dead, and r = 0.380; P<0.001 for litter fuel moisture).  16-day composite 
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MODIS vegetation index products were positively and linearly correlated with live, dead, 

and litter fuel moisture (Table 1; Figure 3).  NDVI had the strongest relationship with live 

fuel moisture (r = 0.462; P<0.001), and EVI2 had stronger correlations with standing 

dead (r = 0.450; P<0.001) and litter (r = 0.374; P<0.001) fuel moisture. 

 

MODIS-based fuel moisture models 

Empirical models were derived from the MODIS-based vegetation indices (EVI, EVI2, 

and NDVI) that were most strongly correlated with fuel moisture at each temporal scale 

(Table 1; daily, 8-day, 16-day).  Each vegetation index was analyzed alone and in all 

possible combinations to determine the strongest predictive relationships.  Using daily 

vegetation index data, EVI alone had the strongest linear relationship with live fuel 

moisture (R
2
 = 0.15; p<0.001; Table 2), but no predictive power (R

2
pred = 0.00), and no 

relationship with dead fuel moisture (R
2
 = 0.00; R

2
pred = 0.00; p=0.082; Table 3).  No 

other daily VI’s alone or in combination generated models that accurately predicted dead 

fuel moisture.  The best relationships using 8-day composite data for both live (R
2
 = 0.20; 

R
2

pred = 0.15; p<0.001; Table 2) and dead (R
2
 = 0.14; R

2
pred = 0.06; p=0.001; Table 3) fuel 

moisture contained both EVI and NDVI.  16-day composite indices had the strongest 

relationships with both live and dead fuel moisture of all MODIS-based models 

examined.  Best MODIS-based predictive models for both live (R
2
 = 0.46; R

2
pred = 0.40; 

p<0.001; Table 2) and dead fuel moisture (R
2
 = 0.19; R

2
pred = 0.12; p=0.002; Table 3) 

included EVI2 and NDVI. 

 WIMS-based algorithms, which are currently used in fire planning and 

management in Hawaii, were poor predictors of in situ fuel moisture measurements 

compared with MODIS-based models.  NFDRS predictions of live fuel moisture had 

slightly weaker relationships with in situ measurements (R
2
 = 0.37; R

2
pred = 0.33; 

p<0.001; Figure 3) than MODIS-derived predictions (Table 2).  There was no 

relationship between NFDRS predicted and in situ dead fuel moisture (R
2
 = 0.05; R

2
pred = 

0.00; p=0.066; Table 3; Figure 4).  KDBI was an even poorer predictor of both live (R
2
 = 

0.06; R
2

pred = 0.01; p=0.050; Table 2) and dead (R
2
 = 0.01; R

2
pred = 0.00; p=0.477) fuel 

moisture (Table 3). 



79 

 

 

 Hybrid models (containing both MODIS and WIMS components) were generally 

more effective predictors of in situ fuel moisture than either MODIS or WIMS models 

alone (Table 2).  The most effective overall predictor of live fuel moisture used 8 day 

MODIS EVI as well as NFDRS and KBDI data (R
2
 = 0.49; R

2
pred = 0.41; p<0.001; Figure 

5), which represents only a slight improvement over the MODIS-only model. Hybrid 

models for dead fuel moisture (R
2

pred = 0.00 for all models) did not offer improvements 

over the best MODIS-only model (Table 3; Figure 6).   

 All models presented above are generalized across all study sites, but in some 

cases a site specific model yielded stronger relationships with in situ fuel moisture.  

When a site factor was added to the best MODIS-based model (16 day composite VI), 

additional variability was explained by the model (R
2
 = 0.61; R

2
pred = 0.59; p<0.001), 

adding considerable predictive power.  Similarly, adding a site factor to the NFDRS 

model for live fuel moisture prediction improved model fit (R
2
 = 0.42; R

2
pred = 0.39; 

p<0.001).  Dead fuel moisture models were not improved by the inclusion of a site factor.   

 

Discussion 

Overall, these results show that MODIS-based vegetation indices are better predictors of 

in situ fuel moisture content than currently used WIMS-based models for nonnative M. 

maximus-dominated grasslands in Hawaii.  These results support similar work in 

shrubland, forest, and heathlands in Australia (Caccamo et al., 2011), where MODIS data 

better predicted live fuel moisture (R
2
= 0.69) than the commonly used KDBI predictors 

(R
2
= 0.15).  Strong relationships were also shown between remotely sensed VI’s and live 

fuel moisture in several Mediterranean vegetation types (0.72<R
2
< 0.82) (Chuvieco et al., 

2002) and in the Coastal Plains of Georgia, USA (r =0.57-0.96) (Hao and Qu, 2007).  

While my results showed improvement over the current system for live fuel moisture 

prediction in Hawaii, the relationships were weaker than those typically found elsewhere.  

A possible explanation for this is that there is a large amount of standing dead guinea 

grass, particularly during drier months (Chapter 3), making moisture content and, thus, 

reflectance signatures over an area represented by one pixel quite variable, as described 

by Danson and Bowyer (2004).   
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 Dead fuel moisture content in non-native M. maximus grasslands in Hawaii was 

not well predicted by any of the models tested.  I hypothesized that vegetation indices 

would be stronger predictors of live than dead fuel moisture, but expected a better model 

than obtained for dead fuel moisture, as both live and dead fuel moistures change 

seasonally with precipitation events (Chapter 3).  While several previous studies have 

evaluated various remotely sensed greenness-based data products for their ability to 

predict live (Danson and Bowyer, 2004; Hao and Qu, 2007; Caccamo et al., 2011) and 

total fuel moisture content (Chuvieco et al., 2002), few have looked at the relationships 

with dead fuels alone (Nieto et al., 2010).  In tropical grassland ecosystems, dead fuels 

can make up well over half of the total fine fuel load (Kauffman et al., 1998), and 

typically play a predominant role in driving fire behavior.  Despite the limitation of using 

MODIS-derived products to predict dead fuel moisture content in these ecosystems, these 

results show that the current WIMS-based prediction systems (NFDRS, KDBI), which 

are commonly used in fire management today in Hawaii, do an even poorer job of 

predicting dead fuel moisture content. 

 While MODIS-based models for live fuel moisture content showed only moderate 

improvements over WIMS-based models, an important additional advantage of this 

method is the continuous spatial coverage provided by satellite data.  The RAWS 

network has weather stations throughout the U.S., providing frequent points from which 

WIMS-based models can be extrapolated (http://www.raws.dri.edu/).  However, fires 

commonly occur in remote areas, and there are large regions with no RAWS coverage.  

In addition, many areas, including Hawaii, have very steep topography, where important 

weather variables such as precipitation and relative humidity change rapidly with spatial 

position (Giambelluca et al., 2011), limiting accurate moisture prediction to small areas 

near RAWS towers.  Further, sensors on weather towers frequently are inoperable or 

have sensors that have not been properly calibrated and, thus, commonly transmit 

inaccurate data which requires a thorough quality assurance protocol – a time expenditure 

that few fire managers can justify.  In this study, for example, of all WIMS data points 

corresponding to in situ fuel moisture measurements (N=116), only 62% of them (N= 72) 

http://www.raws.dri.edu/
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could be used in the analysis including WIMS data due to sensor or data transmission 

failure.   

While MODIS-based models had stronger relationships with fuel moisture than 

WIMS-based models, the best predictive model for live fuel moisture included 

components of both systems.  The problems associated with the WIMS measurements 

(proximity to RAWS station, data quality) discussed above, however, should be carefully 

evaluated before using these hybrid models to predict fuel moistures.  The slight 

advantage of using the hybrid model (R
2

pred =0.41) over the MODIS-based model (R
2

pred 

=0.40) is likely not enough to warrant the additional trouble of assuring good WIMS 

data.  Dead fuel moisture was best predicted using a model based on MODIS data alone, 

eliminating the uncertainties associated with using WIMS data. 

Issues with spatial continuity should also be considered before developing a site-

specific model for fuel moisture prediction.  In this paper, there was improved predictive 

capability (i.e. R
2

pred =0.59 vs. R
2

pred =0.40) of some models when a site term was 

included, but due to the rapid change in topography and, thus, climate in many areas of 

Hawaii (Giambelluca et al., 2011), site specific models should be used only with extreme 

caution outside of the area where in situ  fuel measurements were taken and the models 

were developed.   

It was expected that there would be a tradeoff between accuracy in spatial and 

temporal resolution of fuel moisture content when weather station models were compared 

to MODIS-based models. My hypothesis that daily MODIS data would be the best 

predictor of fuel moisture, however, was not supported by my data.  Instead, the best 

MODIS-only predictive models for both live and dead fuel moisture were developed 

using the 16-day composite data.  I expect that this result is a function of improved 

accuracy of each pixel value in the composite images outweighing the benefits of better 

temporal resolution of changes in vegetation phenology.  This finding provides an 

unexpected additional benefit for fire managers, as the 16-day composites are easily 

accessed and freely downloadable from the internet.   

I hypothesized that EVI would be the strongest predictor of fuel moisture because 

previous work has shown it to perform well in areas of high biomass (Jensen, 2007), 
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which was only partially supported by my data.  The best overall model (hybrid) for live 

fuel moisture prediction incorporated 8-day composite EVI data, but the best MODIS-

only models utilized NDVI and EVI2 vegetation indices.  Overall, EVI, NDVI and EVI2 

significantly outperformed all other types of vegetation indices explored.   

 In summary, this research evaluated the utility of MODIS-based vegetation 

indices to accurately predict fuel moisture content.  These results demonstrate that remote 

sensing tools may improve current methods for real-time fuel moisture estimation in 

tropical grasslands.  In addition, the models presented in this paper can be directly used 

by fire managers to improve real time moisture prediction in guinea grass dominated 

vegetation on leeward Oahu.   
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Table 1.  Pearson correlation coefficients (r) showing the strength of the relationships 

between Terra-MODIS derived daily, 8-day, and 16-day vegetation indices for guinea 

grass ecosystems on Oahu, Hawaii.  Bold font indicates values that are statistically 

significant at the P<0.05 level.  

 

 

 

 

Live Dead Litter 

 

r P-value r P-value r P-value 

Single day images 

      EVI_1 0.338 0.001 0.170 0.093 0.184 0.069 

NDVI_1 0.088 0.368 -0.015 0.875 -0.019 0.844 

EVI2_1 0.081 0.410 0.033 0.733 0.035 0.717 

VARI_1 0.165 0.100 0.075 0.456 0.084 0.404 

NDWI_1 -0.026 0.787 0.045 0.642 0.083 0.398 

NDII_1 0.037 0.704 0.186 0.056 0.150 0.123 

RGRE_1 0.055 0.576 0.045 0.643 -0.005 0.960 

Integral_1 0.105 0.282 0.142 0.144 0.124 0.204 

8 day composites 

      EVI_8 0.399 0.000 0.333 0.000 0.280 0.003 

NDVI_8 0.347 0.000 0.309 0.001 0.403 0.000 

EVI2_8 0.328 0.000 0.379 0.000 0.380 0.000 

VARI_8 0.098 0.307 0.028 0.770 0.040 0.676 

NDWI_8 0.020 0.837 0.120 0.211 0.016 0.871 

NDII_8 0.139 0.144 0.220 0.020 0.160 0.093 

RGRE_8 0.274 0.003 0.140 0.139 0.268 0.004 

Integral_8 -0.101 0.287 -0.051 0.590 -0.200 0.033 

16 day MODIS products 

     EVI_16 0.364 0.001 0.423 0.000 0.325 0.003 

NDVI_16 0.462 0.000 0.362 0.001 0.329 0.002 

EVI2_16 0.449 0.000 0.450 0.000 0.374 0.001 

RGRE_16 0.398 0.000 0.049 0.663 0.119 0.283 
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Table 2.  Models predicting in situ live fuel moisture.  MODIS-based models were generated from remotely sensed Terra-MODIS 

daily, 8-day composites, and 16-day vegetation index data.  WIMS-based models are calculated from onsite weather data.  Hybrid 

models were developed using the best predictors from both MODIS and WIMS models.  Bold font indicates most effective models. 

 

 

 

  Model R
2
  Pred R

2
  P 

MODIS-based models    

1-day LFM= 124 + 135 EVI_1 0.15 0.00 <0.001 

8-day LFM= 91.1 + 171 EVI_8 + 78.4 NDVI_8 0.20 0.15 <0.001 

16-day  LFM=2.1 + 402 EVI2_16 + 144 NDVI_16 0.46 0.40 <0.001 

WIMS-based models 

 

   

NFDRS LFM = 78.7 + 0.807 NFDRS 0.37 0.33 <0.001 

KBDI LFM = 191 - 0.0624 KBDI 0.06 0.01 0.050 

Hybrid models 

 

   

1-day LFM = 101 + 67.6 EVI_1 + 0.654 NFDRS - 0.0652 KBDI 0.46 0.37 <0.001 

8-day LFM = 91.2 + 7.77 EVI_8 + 0.735 NFDRS - 0.0524 KBDI 0.49 0.41 <0.001 

16-day LFM = 35.2 + 0.650 NFDRS + 244 EVI_16 0.38 0.30 <0.001 
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Table 3.  Models predicting in situ dead fuel moisture.  MODIS-based models were generated from remotely sensed Terra-MODIS 

daily, 8-day composites, and 16-day vegetation index data.  WIMS-based models are calculated from onsite weather data.  Hybrid 

models were developed using the best predictors from both MODIS and WIMS-based models.  Bold font indicates the strongest and 

recommended model. 

  Model R
2
 Pred R

2
  P 

MODIS-based models    

1-day DFM = 16.0 + 8.61 EVI_1 0.00 0.00 0.082 

8-day DFM = 10.5 + 16.7 EVI_8 + NDVI_8 0.14 0.06 0.001 

16-day DFM = 5.55 + 39.3 EVI2_16 + 10.9 NDVI_16 0.19 0.12 0.002 

WIMS-based models 

 

   

NFDRS DFM = 7.62 + 1.12 NFDRS 0.05 0.00 0.066 

KBDI DFM = 19.9 - 0.00355 KBDI 0.01 0.00 0.477 

Hybrid models 

 

   

1-day DFM = 8.53 + 4.93 EVI_1 - 0.00807 KBDI + 1.11 NFDRS 0.13 0.00 0.116 

8-day DFM = 4.34 + 20.8 EVI_8 + 0.945 NFDRS 0.14 0.00 0.010 

16-day DFM = 0.79 + 56.2 EVI2_16 + 0.577 NFDRS 0.19 0.00 0.026 
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Figure 1.  Location of sites for in situ live and dead fuel moisture sampling on the 

Waianae Coast and North Shores of Oahu, Hawaii.  



87 

 

 

Figure 2:  Temporal trends of in situ live and dead fuel moisture and daily MODIS-

derived vegetation indices (VI) for nonnative invasive guinea grass ecosystems at (a) 

Schofield Barracks, (b) Dillingham Ranch, and (c) Yokohama State Park on Oahu, 

Hawaii from October 2009 – October 2010.  VI’s (NDVI, EVI, and EVI2) are shown by 

black lines, and live (solid) and dead (dashed) fuel moisture is shown in grey.  
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Figure 3:  Temporal trends in 8-day composite and 16-day MODIS-derived vegetation 

indices (VI) for nonnative invasive guinea grass ecosystems at Schofield Barracks, 

Dillingham Ranch, and Yokohama State Park on Oahu, Hawaii from October 2009 – 

October 2010.   
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Figure 4:  NFDRS system of live fuel moisture prediction (x-axis) vs. in situ live fuel 

moisture (y-axis) measurements.   
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Figure 5:  NFDRS system of dead fuel moisture prediction (x-axis) vs. in situ dead fuel 

moisture (y-axis) measurements.   
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Figure 6:  Live fuel moisture prediction (x-axis) using a) MODIS vegetation index and b) 

Hybrid models vs. in situ live fuel moisture (y-axis) measurements.   
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Figure 7:  Dead fuel moisture prediction (x-axis) using MODIS vegetation indices vs. in 

situ live fuel moisture (y-axis) measurements.   
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CHAPTER 6.  RESTORATION OF AN INVASIVE GRASS DOMINATED 

TROPICAL DRYLAND ECOSYSTEM:  IMPACTS ON FUELS AND FUTURE 

FIRE POTENTIAL 

 

Abstract 

Ecological restoration is often challenged with simultaneously promoting native species 

recovery and managing for the synergistic impacts of disturbances such as fire and 

nonnative invasions. Hawaiian tropical dry lowland forest ecosystems are among the 

most endangered in the world, primarily due to land use change, invasive species, and 

increases in fire.  The goal of this research was to investigate the potential for ecological 

restoration using native species to compete with the nonnative invasive grass 

Megathyrsus maximus, while also reducing future fire potential and behavior.  M. 

maximus was suppressed with pre- and post-planting herbicide applications, and three 

suites of native species were outplanted in a randomized, complete block design that also 

included herbicide control and untreated control treatments.  Species cover and fuels 

were measured 27 months after outplanting in each treatment plot, and potential fire 

behavior was modeled using the BehavePlus fire modeling software.  Native outplant 

survival was moderate, averaging 51% across species.  Compared to untreated controls, 

M. maximus cover was reduced by 76-91% in outplant treatments (P<0.001), and live and 

dead grass fuel loads were reduced by more than 92% (P<0.001) and 68% (P<0.05), 

respectively.  Moisture content was much lower for native Dodonaea viscosa individuals 

(84%) than other native woody species (201-328%).  However, neither fuel moisture nor 

modeled fire behavior (rate of spread, flame length, fireline intensity) differed between 

outplant, herbicide control, and untreated control plots.  These results demonstrate that 

restoring a native species component to tropical dry forests is possible, but that ecological 

restoration will not necessarily alter the potential for fire and subsequent site degradation. 

 

Introduction 

A primary goal of ecosystem restoration is to return aspects of a natural ecosystem to 

treated areas (Hobbs and Norton, 1996), and to assist the recovery of an ecosystem that 

has been degraded, damaged, or destroyed (SERI, 2006).  Disturbances, such as fire, are a 
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critical component of all ecosystems, and play a large role in controlling species 

interactions and ecosystem structure and function (Turner, 2010). As such, ecological 

restoration typically involves promoting native species, but also necessitates managing 

for disturbance regimes that both promote native species and discourage non-target 

species (MacDougall and Turkington, 2005). 

 In many ecosystems, fuels management is a large component of ecological 

restoration, as fire regimes have been altered becuase vegetation communities are 

markedly different from their historical composition (Baker, 1994; Brooks et al., 2004).  

In temperate ponderosa pine ecosystems, for example, fire suppression has resulted in a 

large buildup of surface fuels, and prescribed fire and mechanical fuel treatments are 

often employed to return a mosaic of natural surface fire regimes to the landscape (Baker, 

1994; Allen et al., 2002).  The reduction in understory fuels can simultaneously restore 

ecological structure and function, and return fire intervals to their historic range of 

variability (Fule et al., 2001).   

 In tropical ecosystems, widespread nonnative invasive grasses often complicate 

ecological restoration efforts, as they often outcompete native species for limiting 

resources (Ammondt et al., 2012), and alter disturbance regimes. Megathyrsus maximus, 

[Jacq.] (guinea grass; previously Panicum maximum and Urochloa maxima [Jacq.]), an 

African pasture grass, has been introduced to many tropical countries as livestock forage 

(D'Antonio and Vitousek, 1992; Portela et al., 2009).  It was introduced to Hawaii for 

cattle forage and became naturalized by 1871 (Motooka et al., 2003).  Because M. 

maximus is well adapted to a broad range of conditions and can alter fire susceptibility by 

increasing fuel loads and fuel continuity (Chapter 3), it is one of the more problematic 

invaders in Hawaii and throughout the tropics.  M. maximus recovers rapidly following 

fire by resprouting and seedling recruitment (Vitousek, 1992; Williams and Baruch, 

2000), contributing to a positive feedback cycle between grass invasion and increased 

wildfire frequency and intensity (D'Antonio and Vitousek, 1992).   Because guinea grass 

recovers quickly following fire and is competitively superior to most native species 

(Williams and Baruch, 2000; Ammondt and Litton, 2012), many areas in Hawaii are now 

faced with restoring woody communities to both facilitate native species establishment 

and manage for reduced fire occurrence and intensity. 
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 Globally, tropical dry forests are among the most endangered ecosystems types 

(Vieira and Scariot, 2006) and in Hawaii it is estimated that less than 10% of this 

ecosystem type remains (Bruegmann, 1996).  Remnant stands of Hawaiian dry forests 

often contain an invasive grass understory, making them susceptible to wildfire, further 

invasion and, ultimately, type conversion to nonnative grassland (Chapter 2).  Fire is not 

believed to have historically played a large role in the evolution of Hawaiian tropical dry 

forest ecosystems due to lack of ignition sources and the absence of a continuous fine 

fuel bed (LaRosa et al., 2008). As a result, native Hawaiian species possess few 

adaptations to survive fire (Rowe, 1983; Vitousek, 1992) or to passively recover in the 

postfire environment (D'Antonio et al., 2011).  As such, wildfire management is critical 

to the restoration of these ecosystems.  Priority restoration objectives in these ecosystems 

typically include removal of the processes causing degradation (i.e., anthropogenic 

wildfire, grass invasion, nonnative ungulates), and reintroduction of a native species 

component (Cordell et al., 2008).  

 The overarching objective of this research was to investigate the potential for 

using native woody species restoration outplantings to simultaneously compete with M. 

maximus, thereby reducing grass fuels and increasing native species cover, and reduce the 

potential for fire spread and intensity in these invasive grass-dominated ecosystems.  

Specific hypotheses included:  (i) M. maximus cover and fine fuel loads would be lower 

in native outplant treatment plots than in herbicide control or untreated control plots due 

to competition between the grass and native plants (Ammondt and Litton, 2012); (ii) total 

fuel loads would be highest in untreated control plots due to chemical grass suppression 

in outplant and herbicide control treatments (Motooka et al., 2002); (iii) fine fuel 

moisture content would be higher in outplant treatments than in either herbicide control 

or untreated control plots due to shading by woody species (Bigelow and North, 2012); 

and (iv) outplanting native species would result in decreased potential fire spread and 

intensity compared to untreated control plots (Griscom and Ashton, 2011; Bigelow and 

North, 2012).  These hypotheses were tested by quantifying species cover and fuels 27 

months after outplanting and modeling fire behavior in a randomized complete block 

design (three native species outplant treatments, herbicide control and untreated control) 

in a lowland dry ecosystem dominated by M. maximus on the Island of Oahu. 
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Methods 

Study site and restoration treatments 

This study was conducted in the Waianae Kai Forest Reserve on leeward Oahu, Hawaii 

(300 m.a.s.l., 158°9'181"W, 21°28'53"N; Figure 1). Mean annual precipitation at the site 

is 1258 mm (Giambelluca et al., 2011), and mean annual temperature is 22°C (T. 

Giambelluca, Unpublished data).   Soils are in the Ewa series (fine, kaolinitic, 

isohyperthermic Aridic Haplustolls) formed in alluvium weathered from basaltic rock 

(Soil Survey Staff, 2006).  This study builds upon work describing initial survival and 

response of native species in the first 8 months after outplanting (Ammondt et al., 2012).  

In July 2009, the study area was mowed, on September 7, 2009 herbicide was applied to 

the entire study area except untreated control plots (see Ammondt, Litton et al 2012 for 

details), and in October 2009, a 0.13 ha fence was erected to exclude the feral ungulates 

(pigs, goats, cattle) that are common in the area.   

Four blocks were established along an elevation gradient, and five 9 m
2
 square 

treatment plots were set up in each block.  On January 7, 2010, three different suites of 

native species were planted.  All three outplant treatments included Dodonaea viscosa 

(L.) Jacq.) (a’ali’i), a shrub species, and Plumbago zeylanica L. (ilie’e), a ground cover 

and each contained one of three shade-producing canopy trees, either Thespesia populnea 

(L.) Sol.(milo), Cordia subcordata Lam. (kou), or Myoporum sandwicense (A. DC.) A. 

Gray (naio).  Additionally, herbicide control (herbicide but no native outplants) and 

untreated control (no herbicide or native outplants) treatments were randomly assigned 

within each block.   Outplants were obtained from a local native plant nursery (Hui Ku 

Maoli Ola, Kaneohe, Hawaii) in 10 cm containers.  Twenty-five plants were hand-planted 

in each treatment plot (12 groundcover (P. zeylanica), 9 shrub (D. viscosa), and four 

canopy trees), and each plant was given 1 L of supplemental water immediately 

following planting and once per week for three weeks. Plants that died within one month 

of outplanting (21% mortality) were replaced.  On April 12, 2010, November 30, 2010, 

and May 21, 2011, the pre-emergent, grass-specific herbicide fluazifop p-butyl 

(Fusilade
® 

DX, EPA reg. no. 100-1070) was applied for continued suppression of M. 

maximus regrowth.  In addition, herbaceous weeds were hand-pulled monthly from May-

August, 2010 (Ammondt et al 2012). 
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Survival and Cover 

Native species survival was measured on April 24, 2012, 27 months after outplanting.  

Percent cover of native species, M.maximus, and surface litter was measured on April 25-

26, 2012 using a point-intercept method (81 point plot frame on each 9 m
2
 treatment or 

untreated control plot).   

 

Fuels 

Surface litter and standing live and dead fine fuel loads (M.maximus and P. zeylanica) 

were measured in each 9 m
2 

plot by collecting surface litter and clipping live and dead 

standing vegetation in four randomly located 625 cm
2
 (25x25 cm) subplots and 

compositing by species.  Within 5 hours of collection, samples were sorted into live and 

dead components, weighed, dried at 70° C for 48 hours, and reweighed to determine the 

mass of fuels per unit area and fuel moisture content relative to dry fuel mass.   

Standing live fuel loads (i.e., live biomass) of C. subcordata and D. viscosa were 

estimated with species specific allometric models developed in Hawaii (Litton and 

Kauffman, 2008; Ammondt et al., 2012).  T. populnea and M. sandwicense standing live 

fuels were quantified using new allometric equations developed in this study.  Individuals 

of each woody species were planted around the perimeter of the study area, and 

destructive harvest occurred throughout the experiment to obtain individuals from a 

broad range of sizes. Plants were cut at the soil surface, separated into leafy and woody 

components, dried at 70°C to a constant mass, and weighed.   

Live plant moisture content for native woody species was measured by clipping ≥ 

3 leaves and ≥ 1 woody stem from 3 individuals of each species in each treatment plot 

(D. viscosa, T. populnea, M. sandwicense, and C. subcordata).  Samples were 

immediately placed into plastic bags to retain moisture.  Within 5 hours of collection, 

samples were sorted into herbaceous, woody, and seed components, weighed, dried at 

70° C for 48 hours, and reweighed to determine moisture content of each plant 

component. 
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Fire Modeling 

Potential fire behavior is commonly estimated using fire modeling software which either 

utilizes standard fuel models (Scott and Burgan, 2005) or custom, in-situ fuels and 

weather data as input parameters.  Model outputs include potential for ignition, rate of 

fire spread, flame length, and fireline intensity (Andrews et al., 2005), allowing the user 

to estimate expected fire behavior for a given site.  Inputs to the model can be altered to 

simulate fire behavior under different management scenarios (e.g., outplantings vs. 

controls).  BehavePlus (version 5.0.5) fire modeling software was used for all fire 

behavior simulations.   

All fuels data needed as input parameters in the BehavePlus 5.0 fire model were 

collected from each treatment plot, including live and dead fine fuels loads, live and dead 

fuel moisture, and fuel bed depth.  Height of the tallest plant (grass or native) was 

measured in each subplot, and mean fuel height was recorded as 70% of the maximum 

fuel height (Burgan and Rothermel, 1984).  Microclimate variables (air temperature, wind 

speed and direction) were obtained from an adjacent (~50 m) RAWS weather station.  

Live and dead fuel heat contents were measured by bomb calorimetry (Hazen Research, 

Inc., Golden, Colorado, USA).  Previously published values for dead fuel moisture of 

extinction of M. maximus (Beavers, 2001) and woody surface area to volume ratio values 

for humid tropical grasslands (Scott and Burgan, 2005) were used.  One-hour surface area 

to volume ratios were quantified using a LI-3100C portable leaf area meter (Li-Cor, Inc. 

Lincoln, Nebraska) and displacement in water.  20-ft wind speeds of 15 km hr
-1

 and 30 

km hr
-1 

were used to simulate moderate and severe fire danger scenarios. A wind 

adjustment factor of 0.3 was used for all plots, to adjust the windspeed collected by the 

RAWS weather stations (20-ft wind speed) to that at the vegetation height (surface wind 

speed) (Andrews et al., 2005).   Modeled fire behavior output consisted of probability of 

ignition (%), maximum rate of spread (ROS) (m/min), fireline intensity (kW m
-1

), and 

flame length (m). 

 

 Statistical Analyses 

Analysis of Variance (ANOVA) was used to elucidate differences in fuel loads (total, M. 

maximus, native plants), fuel moisture (M. maximus, native plant, scaled plot moisture), 
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and predicted fire behavior (ROS, flame length, fireline intensity, probability of ignition).  

Block was treated as a random factor, and plot (treatment) was treated as a fixed factor.  

Tukey’s multiple comparison tests were used following any significant ANOVA analysis 

to determine which treatment or control groups had significantly different means.  For 

allometric modeling, predictive relationships between stem basal diameter and leaf, 

wood, and total standing fuels were developed using nonlinear regression methods.  

Power, quadratic, and cubic models were explored, and final model selection was based 

on R
2
 values and residual plots.  IBM SPSS v.20 (IBM SPSS, Inc., Chicago, IL) was used 

for all statistical analyses. Results were considered significant at α<0.05 and marginally 

significant at 0.05 ≤ α ≤0.10. 

 

Results 

Survival and Cover 

Survival of native plants averaged 51% across species, with 57% of D. viscosa (n=62), 

56% of T. populnea (n=9), 38% of M. sandwicense (n=6), and 19% of C. subcordata 

(n=3) alive 27 months after planting.  Survival was marginally higher for D. viscosa than 

C. subcordata (P=0.06), but no other differences in survival existed between species.  

Survival of D. viscosa, which was present in all outplant treatments, did not differ 

between outplant treatments (P=0.99).  Individual P. zeylanica plants could no longer be 

distinguished to determine survival rates, but cover of this ground cover species was 

significantly higher in all outplant treatment plots than either herbicide control (P<0.001) 

or untreated control plots (P<0.001), as there was no natural recruitment of any native 

species in the herbicide or untreated controls. P. zeylanica ranged from 68-92% cover, 

and there was no difference between outplant treatments (P=0.25).   

M. maximus cover was significantly reduced by outplant treatments, ranging from 

9-24% cover in plots with native species outplants, and 91-100% cover in herbicide 

control and untreated control plots (P<0.001).  There was no difference in M. maximus 

cover between outplant treatments (P≥0.44), or between herbicide control and untreated 

control treatments (P= 0.90).  Litter cover ranged from 97-100%, and did not differ 

between treatments (P= 0.67).  
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Fuels 

Basal diameter was a relatively accurate predictor of total standing fuel load for all native 

species (R
2
≥0.61), with the exception of T. populnea leaf fuel load (R

2
=0.38) (Table 1), 

and all final models were highly significant (P<0.01). Log transformation of dependent 

and/or independent variables, inclusion of tree height, or inclusion of an additional term 

to account for the heteroskedasticity that is common in allometric models (Mascaro et al., 

2011) did not significantly improve model fits.  Mean individual plant standing live fuel 

loads across all treatments 27 months after outplanting was 738 g, 87 g, 335 g, and 30 g 

for D. viscosa, T. populnea, M. sandwicense, and C. subcordata, respectively.  D. viscosa 

individual plant standing live fuel load was higher than T. populnea (P=0.03) but did not 

differ from that of C. subcordata (P=0.30) or M. sandwicense (P=0.74).  There were no 

significant differences across the three canopy trees (P=1.00). When analyzed by 

treatment, D. viscosa standing live fuel loads did not differ with outplant treatment 

(P=0.10).  When fuels for all woody native species were summed within each treatment 

plot, all outplant treatments were significantly higher than both the untreated control and 

herbicide control treatments (P<0.01), as there was no natural recruitment of native 

species.  M. sandwicense outplant plots had more native woody fuels (6.47 Mg ha
-1

) than 

C. subcordata treatments (3.27 Mg ha
-1

; P<0.05), but neither of these treatments differed 

from T. populnea treatments (3.76 Mg ha
-1

; P>0.08; Figure 2).   

Fuel loads for the ground cover species P. zeylanica varied by treatment (P<0.01), 

with no individuals recruiting or growing into untreated control or herbicide control 

treatments.  C. subcordata treatment plots had more P. zeylanica fuels (4.87 Mg ha
-1

) 

than T. populnea (2.63 Mg ha
-1

; P<0.01; Figure 2), and M. sandwicense treatments (3.68 

Mg ha
-1

) were marginally different in P. zeylanica fuels compared to other outplant 

treatments (P>0.06; Figure 2). 

Native woody plant moisture content differed greatly by species (Figure 3). Mean 

D. viscosa moisture content was 84%, and was considerably lower than any other woody 

species (P<0.01).  Mean M. sandwicense moisture content (328%) was higher than any 

other woody outplant species (P<0.01).  Mean T. populnea (201%) and C. subcordata 

(203%) moisture content did not differ (P= 0.99).  Mean moisture content of P. zeylanica 

(120-165%) did not differ between treatments (P= 0.27).  
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Live and dead M. maximus fuel loads were greatly reduced in all restoration 

treatments (Figure 2).  Live grass fuel loads ranged from 0.55-0.68 Mg ha
-1

 in outplant 

plots, with no difference between outplant treatments (P=1.00 for all combinations).  

Herbicide plots averaged 3.34 Mg ha
-1 

of live grass fuels, and untreated controls averaged 

8.13 Mg ha
-1

.  Untreated control plots had significantly more live grass than any outplant 

treatment (P<0.01) or herbicide control treatment (P=0.01).  Standing dead M. maximus 

fuel loads were also highest in untreated control plots (P<0.05; 5.50 Mg ha
-1

), with no 

significant differences between outplant treatment and herbicide control plots (0.22-1.76 

Mg ha
-1

; Figure 2).  Litter ranged from 5.05-8.70 Mg ha
-1

, and did not differ by treatment 

(P=0.15; Figure 2).  Moisture content for M. maximus fuel loads ranged from 103-189% 

for live grass and 25-48% for dead grass and did not differ between treatments (live, 

P=0.36; dead, P=0.36).  M. maximus live fuel moisture was on average 70% higher than 

D. viscosa moisture (P<0.001), and 176% lower than M. sandwicense moisture content 

(P<0.001), but no different than T. populnea (P= 0.09) or C. subcordata (P= 0.13) 

There was a significant difference in total plot fuel loads (native plant + M. 

maximus fuels combined; P=0.03; Figure 2).  Control plots had higher total fuel loads 

(22.33 Mg ha
-1

) than all other treatments (P<0.05) except M. sandwicense plots (15.98 

Mg ha
-1

), where the difference was only marginally significant (P= 0.06).  There were no 

differences in total plot fuel loads between outplant treatments (13.97-15.98 Mg ha
-1

) and 

herbicide control plots (10.46 Mg ha
-1

; P>0.05).  When moisture content for the entire 

treatment plot was weighted by the biomass of each species present, mean live fuel 

moistures ranged from 118% to 182%, and mean dead fuel moisture ranged from 25% to 

48%. However, there were no significant differences in live (P= 0.10) or dead (P= 0.41) 

moisture content between any treatment or control plots (Figure 4).  Average fine fuel 

height ranged from 41.8 to 44.4 cm in herbicide control, T. populnea, and M. 

sandwicense treatment plots, which was significantly lower than average fuel height in 

untreated control plots (64.1 cm; P<0.05).  Average fuel height in C. subcordata 

treatments (49.9 cm) did not differ from any other treatment (P>0.18 for all treatments). 
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Fire Modeling 

Despite differences in fuels between treatments, no differences were observed in 

predicted fire behavior between untreated control, herbicide control, and outplant 

treatment plots (P≥0.40; Table 2).  When surface windspeeds were simulated at 15 kph, 

rate of spread (ROS) was predicted to be 0.30-1.75 m min
-1 

(P= 0.40), flame length was 

0.33-1.25 m (P= 0.48), fireline intensity was 36.5-759.8 kW m
-1

 (P= 0.71), and 

probability of ignition (POI) was 0.75-2.75% (P= 0.59).  When surface windspeed 

simulations were increased to 30 kph, ROS was 0.53-3.48m min
-1 

(P= 0.40), flame length 

was 0.40-1.73 m (P= 0.45), fireline intensity was 64.5-1506.8 kW m
-1

 (P= 0.43), and 

probability of ignition (POI) was 0.75-2.75% (P= 0.59; Table 2).   

 

Discussion 

The results from this study, and others in Hawaiian dry lowland ecosystems that have 

been heavily invaded by nonnative grasses, suggest that ecological restoration of native 

species can be successful with substantial initial management that includes fencing, 

invasive grass control, and native species outplanting (Thaxton et al. 2012; Cabin et al., 

2002b; Daehler and Goergen, 2005; Ammondt et al., 2012).  Survival rates of native 

outplants at 27 months in this study were moderate (~51%), and when coupled with 

initial site preparation and chemical grass suppression, a significant reduction in M. 

maximus cover, fuel load, and fuel height was observed in outplant treatment plots.  The 

herbicide control treatment (herbicide without native outplantings) resulted in significant 

decreases in fuel loads and fuel height as compared to untreated controls, but percent 

cover of invasive grass was not decreased by herbicide treatment alone, indicating that 

active outplanting of native species is necessary to effectively reduce fuel loads 

associated with this invasive grass.   

When native woody species and invasive grass fuel components were considered 

together, there was more total burnable fuel in untreated control plots than most treatment 

plots.  From a restoration perspective, rapid growth leading to increased biomass of 

native species and decreased invasive grass biomass and fuels would be considered a 

success (Ammondt et al., 2012). However, from a fuels and fire management perspective, 

the moisture content, continuity and arrangement of fine fuels must also be considered 
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(Pyne et al., 1996).  At 27 months following outplanting, there was no vertical separation 

of surface and canopy fuels, so at this early stage of ecological restoration, native plants 

would likely contribute to, rather than hinder, surface fire spread.  As the woody species 

grow into the canopy, one would expect lower surface wind speeds and a shading effect 

on the understory (Freifelder et al., 1998), resulting in separate surface and canopy fuel 

considerations for fire management (Scott and Reinhardt, 2001; Scott and Burgan, 2005).   

Contrary to my original hypothesis, I did not see a difference in either live or dead 

fuel moisture between control and treatment plots.  Canopy species (T. populnea, M. 

sandwicense, and C. subcordata) were much smaller by the end of the experiment than 

the intended midstory species (D. viscosa), so they did not provide the shading effect that 

was expected.  Selection of appropriate species for outplanting is critical, and when 

objectives include both restoration and fire management, important trade-offs need to be 

considered.  D. viscosa is a pantropical species, and is one of very few native Hawaiian 

plants shown to have fire adaptations (Hughes et al., 1991; Ainsworth and Kauffman, 

2009). The rapid growth of this species in this study, and other restoration studies in 

Hawaii (Ammondt and Litton; D'Antonio et al., 1998; Medeiros and Von Allmen, 2006; 

Ammondt et al., 2012), and the broad range of habitats in which it is found make it an 

obvious choice for ecological restoration in Hawaii.  The exceedingly low fuel moisture 

content of D. viscosa relative to the other native woody species and the invasive grass in 

this experiment, however, has important implications for fire spread and intensity, and is 

at least partially the reason why no differences were observed in modeled fire behavior 

across treatments.  As a result, what has proven to be one of the best choices in a 

restoration setting for increasing native species cover in Hawaiian dryland ecosystems 

may not be a good choice where fire prevention is a priority, at least not during early 

stages of restoration. 

While the restoration treatments clearly altered fuels, I saw no change in predicted 

fire behavior.  There was a great deal of variability within and among treatments, but a 

trend toward decreased flame lengths, rates of spread, and fireline intensity in outplant 

treatments, particularly those that included M. sandwicense.  As fuel moisture is a critical 

component in assessing the potential for fire (Pyne et al., 1996), I believe that the high 

density planting of low moisture D. viscosa had a large impact on modeled fire behavior.  
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As a hypothetical modeling exercise, I replaced the moisture content measured for D. 

viscosa with that measured for the canopy species in each plot and simulated fire 

behavior at moderate wind speeds, and fire behavior parameters decreased markedly in 

outplant treatments, with lower ROS and intensity than untreated control plots (P<0.05).  

While this post hoc fire simulation was not likely realistic in terms of predicting actual 

fire behavior in outplant treatments that were not included in the field experiment, I 

believe it demonstrates that an assessment of the moisture content of potential restoration 

species is an important avenue for further research when fire management is a priority 

consideration, as it often is in ecological restoration of dry ecosystems globally.   

Probability of ignition, the likelihood that a firebrand will ignite fuels when 

landing on a fuelbed, was very low (<3%) for all treatments.  This measure varies with 

dead fuel moisture, air temperature, and shading by canopy or cloud cover (Andrews et 

al., 2005).  Dead fuel loads, which were primarily M. maximus, had fuel moistures 

ranging from 25-48% in this study, while previously reported dead fuel moisture for this 

species have been 10% or lower (Chapter 3).  Fuel moisture of extinction for guinea grass 

has been reported at 40% (Beavers, 2001), meaning that fire will not carry through dead 

fuels with a moisture content over 40%.  As some of the fuels measured in this study 

were above this threshold, and all were above the mean values reported for this species 

(Chapter 3), I would expect that these probabilities of ignition would change significantly 

if measurements were taken during a warmer, drier period when fires are more likely.    

In conclusion, the synergistic impacts of altered fire regimes and nonnative grass 

invasion have been detrimental to the productivity and biodiversity of tropical 

ecosystems globally (D'Antonio and Vitousek, 1992; Williams and Baruch, 2000; 

Rossiter et al., 2003; Litton et al., 2006; D'Antonio et al., 2011).  Restoration of these 

ecosystems and conservation of remnant intact ecosystem components often require 

active and adaptive management.  Returning a native component to the landscape is 

possible, albeit management intensive, in Hawaiian dry ecosystems (Cabin et al., 2002a; 

Cabin et al., 2002b).  A greater challenge, however, may be the alteration of the positive 

feedback between nonnative grass invasion and repeated wildfires (D'Antonio and 

Vitousek, 1992) to ensure that ecological restoration activities, as well as remnant native 

ecosystem components, are maintained in dry ecosystems throughout the tropics.  



105 

 

Table 1.  Allometric models for predicting native species standing live fuels (i.e., leaf, 

wood and total biomass) from basal diameter in Hawaiian dry lowland ecosystems. 

Dependent variable (Y) N a (SE) b (SE) R
2
 

Dodonaea viscosa 

    Leaf fuels 20 0.08 

(0.10) 

2.25 

(0.40) 

0.78 

Woody fuels 20 0.08 

(0.06) 

2.63 

(0.26) 

0.93 

Total above ground 

fuels 

20 0.13 

(0.09) 

2.55 

(0.21) 

0.95 

Thespesia populnea 

    Leaf fuels 19 0.48 

(0.69) 

1.16 

(0.55) 

0.38 

Woody fuels 19 0.01 

(0.01) 

3.05 

(0.67) 

0.73 

Total above ground 

fuels 

19 0.14 

(0.16) 

1.97 

(0.43) 

0.74 

Myoporum sandwicense 

sandwicense 

sandwicense 

    Leaf fuels 22 0.39 

(0.37) 

2.08 

(0.27) 

0.90 

Woody fuels 22 0.23 

(0.20) 

2.19 

(0.24) 

0.93 

Total above ground 

fuels 

22 0.53 

(0.45) 

2.17 

(0.24) 

0.91 

Cordia subcordata 

    Leaf fuels 15 0.13 

(0.17) 

1.56 

(0.37) 

0.61 

Woody fuels 15 0.15 

(0.18) 

1.50 

(0.46) 

0.66 

Total above ground 

fuels 

15 0.28 

(0.27) 

1.54 

(0.38) 

0.71 

*All models for D. viscosa, T. populnea M. sandwicense and C. subcordata are power 

functions (Y = aX
b
) Y is the dependent variable (g dry weight), X is the predictor variable 

[basal diameter (mm)], and a and b are constants.  D. viscosa equations are from Litton 

andKauffman (2008), and C. subcordata equations are from Ammondt et al.(2012) 
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Table 2.  Predicted fire behavior under both moderate (15 kph) and severe (30 kph) wind conditions in outplant, herbicide control, 

 and untreated control treatment plots in M. maximus-dominated, nonnative grass ecosystems on leeward Oahu, Hawaii.  Means 

 and standard errors are given for fire behavior parameters for each treatment (n=4). 

Parameter 
Wind 

condition 

 Thespesia 

populnea* 

Myoporum 

sandwicense* 

Cordia 

subcordata* 

Herbicide 

Control 

Untreated 

Control  

Model 

R
2 
 

Block 

P 

Treatment 

P   

Rate of Spread (m 

min
 -1

) 

moderate 0.90 (0.3) 0.30 (0.1) 1.13 (0.7) 1.75 (0.3) 1.50 (0.7) 28.79 0.93 0.40 

severe 1.83 (0.5) 0.53 (0.2) 2.13 (1.58) 3.48 (0.6) 2.95 (1.4) 28.80 0.92 0.40 

Flame Length (m) 
moderate 0.78 (0.2) 0.33 (0.1) 0.75 (0.4) 1.15 (0.2) 1.25 (0.6) 24.64 0.98 0.48 

severe 1.10 (0.3) 0.40 0.2) 1.03 (0.6) 1.60 (0.3) 1.73 (0.8) 25.58 0.98 0.45 

Fireline Intensity 

(kW m
-1

) 

moderate 200.50 (110.5) 36.50 (19.1) 316.00 (261.6) 413.25 (138.8) 759.75 (426.2) 27.83 0.5 0.71 

severe 416.5 (230.0) 64.50 (39.5) 611.50 (537.7) 828.00 (276.8) 1506.75 (845.0) 26.06 0.99 0.43 

Probability of 

Ignition (%) 

moderate 2.75 (1.8) 0.75 (0.8) 2.25 (1.0) 2.50 (0.9) 0.75 (0.8) 31.14 0.50 0.59 

severe 2.75 (1.8) 0.75 (0.8) 2.25 (1.0) 2.50 (0.9) 0.75 (0.8) 31.14 0.50 0.59 

* T. populnea, M. sandwicense, and C. subcordata were planted as canopy species in three separate treatments.  A consistent midstory of Dodonaea 

viscosa and a groundcover species, Plumbago zeylanica were planted in each outplant treatment plot. 
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Figure 1.  Restoration site in the Waianae Kai Forest Reserve on Oahu, Hawaii. 
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Figure 2.  Fuel loads for all outplant, herbicide control, and untreated control treatments 

at Waianae Kai Forest Reserve, Oahu, Hawaii.  Bars are means for each fuel component 

in each treatment, and error bars denote one standard error.  Woody outplants (horizontal 

lines) consisted of both D. viscosa and one canopy species (either T. populnea, M. 

sandwicense, or C. subcordata).  All ouplanted plots were also herbicided.  Herbicide 

control plots and untreated control plots did not have a native species outplant 

component.     
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Figure 3.  Native plant live fuel moisture content for M. maximus and restoration 

outplanting species used at Waianae Kai Forest Reserve.  Moisture content for seed, 

leaves, and wood for each species are given, as well as overall moisture content for each 

species scaled by the proportional mass of each plant component.  Lowercase letters 

denote significantly different scaled moisture content between groups at the P<0.05 level.  

Bars are means for each species and error bars are standard errors. 
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Figure 4.  Plot level a) live and b) dead fuel moisture scaled by relative proportions of M. 

maximus, litter, and native outplant (P. zeylanica, D. viscosa, T. populnea, M. 

sandwicense, and C. subcordata) fuels.  Restoration outplant treatments #1-3 contained 

P. zeylanica, D. viscosa, and either 1) T. populnea, 2) M. sandwicense, or 3) C. 

subcordata.  4) Herbicide only and 5) untreated control plots did not contain any native 

outplant species.  No significant differences between treatments were found for either 

live or dead fuel moisture. 
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CHAPTER 7.  CONCLUSIONS 

 

The interactive influences of increased fire and nonnative grass invasion have altered 

many tropical ecosystems worldwide, often converting them to degraded grasslands with 

increased potential for more extreme fire behavior.  The overarching goal of this research 

was to provide tools for improved wildfire prediction in guinea grasslands of Oahu, 

Hawaii using in situ fuels data collection, fire behavior modeling, remote sensing, and 

ecological restoration.  Here, I summarize the major findings and management 

implications of this research, as well as suggest opportunities for future research needs.   

In Hawaii, it is often assumed that wildfire removes the forest canopy and 

nonnative grasses subsequently invade and become dominant, resulting in a sequential 

conversion of forests to grasslands.  This has been shown at the plot level in many 

ecosystems throughout the Hawaiian Islands (Hughes et al., 1991; Ainsworth and 

Kauffman, 2010), and in some cases, the invasive grass can persist for many years, and 

prevent native regeneration (D'Antonio et al., 2011).  A large body of evidence has 

shown that the highly flammable African pasture grasses which have invaded many areas 

of the tropics are superior competitors (Williams and Baruch, 2000; Mack et al., 2001; 

Ammondt and Litton, 2012) that increase the potential for future fire (Brooks et al., 2004; 

Veldman and Putz, 2011).   

When I tested plot-level findings on a landscape scale, in general the story was 

the same – with repeated fire, there is increased grass, and less forest – supporting the 

dominant paradigm.  Also as expected, predicted fire behavior was more extreme in 

grasslands than in forests, with rates of spread 3-5x higher and flame lengths 2-3x higher 

in grasslands than in forests.  In the grass-dominated, heavily utilized impact areas at both 

Schofield and Makua (inside the firebreak), this increased flammability coincided with 

increased grass cover and a concurrent reduction in woody cover over time. Many 

prescribed and accidental fires have occurred in both of these areas over the past 70 years 

(Beavers, unpublished data), and this area is maintained for active military training, so 

restoration of woody cover inside the firebreaks has not been a management priority.  In 

the forested areas outside the firebreaks though, fire prevention is a priority, largely due 

to numerous threatened and endangered species in these forests (Beavers et al., 1999; 
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Beavers and Burgan, 2001).  At Makua, where precipitation and fuel moisture are low 

(Chapter 3), fires are frequent, and response time from fire suppression crews housed at 

Schofield (60 km away) can be long, a similar pattern of increased grass cover through 

time has occurred.  To address this, in 2004, military live fire training was eliminated 

from this installation.  Despite these efforts, several large arson and roadside fires have 

occurred since.  The other forested study area (Schofield Barracks) may be considered a 

bit more of a management success story.   Here, I saw a very different trajectory, with 

more woody cover (albeit nonnative) currently than what was present 50+years ago.  

Schofield houses a well-trained fire management crew, who have made a reduction in 

area burned a high management priority in order to prevent further degradation of 

existing forests (Beavers and Burgan, 2001).  Here I saw that an increased awareness of 

the need to aggressively manage fire and rapid response by well-trained fire personnel 

may help slow or even reverse widespread type conversion.  

Tools to assist managers in predicting, controlling, and mitigating wildfire 

increasingly depend on modeling (i.e. fire prediction software, geospatial analyses, 

remote sensing) to simulate fire risk and behavior.  However, to be accurate and realistic, 

models need to be based on field data and conditions.  The field fuel data collection 

(Chapter 3) presented here represents the first wide-spread quantification of the spatial 

and temporal variability in guinea grass fuel loads in Hawaii.  Overall, fine fuels and 

moistures exhibited tremendous variation, both spatially and temporally, highlighting the 

importance of real-time, site-specific data for the most accurate fire prevention and 

management.   

Dead fuel loads were consistently high, making up at least half, and often closer 

to 75%, of the total fine fuel load in these grasslands.  While live fuel moisture content is 

easier to estimate using remote tools (see Chapter 5) and is often referenced in regards to 

expected site flammability, the continuous standing dead and litter fuel loads provide 

year-round fire potential.  The impact of these high dead fuel loads is evident in fire 

behavior predictions (Chapter 4).  When fire simulations were run using the in situ 

custom fuel model, rates of spread and flame lengths remained moderate even at high 

fuel moistures, suggesting that this large dead fuel component would still drive fire 

behavior.  In comparison, the national GR8 and GR9 humid tall grass models, which 
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assume that ~85% of fuel loads are live, had minimal modeled fire behavior at high fuel 

moisture. 

When the in situ fuels model was tested against data from actual prescribed fires, 

it did appear to perform better than prior models.  However, all 5 of the validation fires 

occurred on the same day and in the same place, which greatly limits the range of fuel 

and weather conditions under which I was able to test these models.  An important 

immediate research need is additional fire behavior data in guinea grass-dominated 

ecosystems across a wide range of fuel (moisture, fuel loads) and weather (windspeed, 

temperature) conditions.  It is possible that multiple custom fuel models for guinea grass 

(e.g., high, moderate, and low loads) will be needed for precise fire behavior predictions 

in these grasslands, and validation fires for each model will be critical to assuring their 

applicability. 

Fuel moisture content is an important driver of fire behavior (Andrews et al., 

2005), yet it has been difficult to accurately estimate this parameter without in situ field 

data.  Chapter 5 demonstrated that MODIS-based vegetation indices are better predictors 

of in situ live fuel moisture content (R
2
=0.46) than currently used models based on 

RAWS data (R
2
=0.37) for guinea grass ecosystems in Hawaii.  Importantly, an added 

advantage of the MODIS-based prediction system is the continuous spatial coverage that 

satellite data provides. The topography of Hawaii is often quite steep, with rapid changes 

in important weather variables such as precipitation and relative humidity with spatial 

position (Giambelluca et al., 2011), making accurate moisture prediction using the 

RAWS-based system limited to small areas immediately adjacent to existing weather 

stations.  While it is clear that there are significant advantages to using the MODIS-based 

prediction system, the RAWS-based tools are deeply ingrained in fire management 

circles, and it may be challenging to convince land managers that the remote sensing 

system is an improvement.  An important next step will be to create a user-friendly 

interface for obtaining and processing the MODIS data and plugging it into a fuel 

moisture prediction algorithm, such that managers can quickly access this critical 

information for a given site. 

Dead fuel moisture was poorly predicted by either MODIS (R
2
= 0.19) or RAWS-

based (R
2
= 0.05) tools.  Because dead fuel makes up such a large component of the total 
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fuel load (see Chapter 3) and the moisture content greatly impacts fire behavior (Chapter 

4), additional research on improved prediction of this fuel component is urgently needed.   

Restoration trials were quite successful at reducing guinea grass fuel loads and 

returning a native species component back into these highly degraded systems (Chapter 

6).  While the first several months of this study required considerable management effort 

(herbiciding, outplanting, weeding, watering), beyond these initial efforts little was 

required to maintain these restoration plots.  For restoration to be feasible at a 

management scale, it is imperative that native plants establish and survive without 

significant ongoing time and money expenditures.  By the last year of this study, 27 

months after outplanting, grass-specific herbicide was only applied once per year in the 

wet season.  A valuable piece of information which I did not explore, but would greatly 

assist restoration planning would be a quantification of the costs associated with this 

restoration approach, including man hours, costs of native plants, herbicide, fencing, etc.  

An estimate of the cost per hectare of scaling a restoration project like this to a large 

management unit would help land managers assess feasibility of such a project. 

Contrary to my hypotheses, modeled fire behavior was not decreased by any 

outplant treatment compared to untreated grass controls, despite greatly altered grass fuel 

loads.  At 27 months following outplanting, there was no vertical separation of surface 

and canopy fuels, so native plants likely contributed to, rather than hindered, modeled 

surface fire spread.  As the woody species grow into the canopy over time, one would 

expect lower surface wind speeds and a shading effect on the understory grass fuels 

(Freifelder et al., 1998).  Continued monitoring of the fuel loads in control and treatment 

plots will elucidate long-term changes in fire potential as a result of restoration 

treatments.  An important, but unexpected result of this research was the great differences 

in fuel moisture in the native plants selected for outplant treatments.  D. viscosa had an 

average moisture content of only 84%, which was considerably lower than any other 

woody species. In contrast, average M. sandwicense moisture content (328%) was much 

higher than any other woody outplant species. These findings highlight the importance of 

careful species selection for any restoration project, and particularly for those in areas 

where fire management is a high priority.  Additional research to determine the best 
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native Hawaiian species for ecological restoration in the context of fire management is 

needed.   

The research projects presented in this dissertation represent important steps in 

improved management of wildfire in guinea grass dominated ecosystems in Hawaii, and 

can inform similar work in grasslands throughout the tropics.  Tools for improved 

wildfire prediction using in situ fuels data collection, fire behavior modeling, remote 

sensing, and field restoration techniques were explored, and many of the results suggest 

that, if implemented, there is capacity to better predict fuel characteristics and resultant 

fire behavior.  Tall humid grasslands of African origin are now pantropical in distribution 

(Williams and Baruch, 2000), and many have very similar fuels characteristics to those 

presented here (Kauffman et al., 1998; Avalos et al., 2008; Portela et al., 2009), making 

these results relevant on a global scale.  Improved fire prediction and management, 

coupled with ecological restoration, has the potential to increase biodiversity, reduce fire 

risk, and improve ecosystem structure and function in invasive grass dominated 

landscapes in Hawaii and throughout the tropics. 
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